Introduction aux Probabilités

Shen LIN

2021

Shen LiN

Email: shen.lin@sorbonne-universite.fr

Organisation

polycopié + feuilles de TD: pdf sur Moodle exemplaires împrimés à chercher au secretariat

Cours d'amphi: 2h -> 1h30 vidéos courtes sur Moodle

TD: corrections sur Moodle

Evaluation: CC (quizzes sur Moodle) 20% Partiel (fin mars) 30% Examen (fin mai) 50%

Introduction

Théorie des probabilités: l'étude des phénomènes caractérisés par le hasard et l'incertitude Exemples: lancer une pièce Pile ou Face lancer un dé

tirage au loto

marche aléatoire (promenade d'un ivrogne) trajectoire d'une poussière de pollen sur la surface de l'eau

Formalisation mathématique: 20 siecle avec l'axiomatique de Kolmogorov

Programme du cours

Chap 1 Ensembles, dénombrement, dénombrabilité

Chap. 2 Espaces probabilisés pour décrire une expérience aléatoire

Variables aléatoires discrètes Chap 3

Variables aléatoires réelles générales Chap. 4

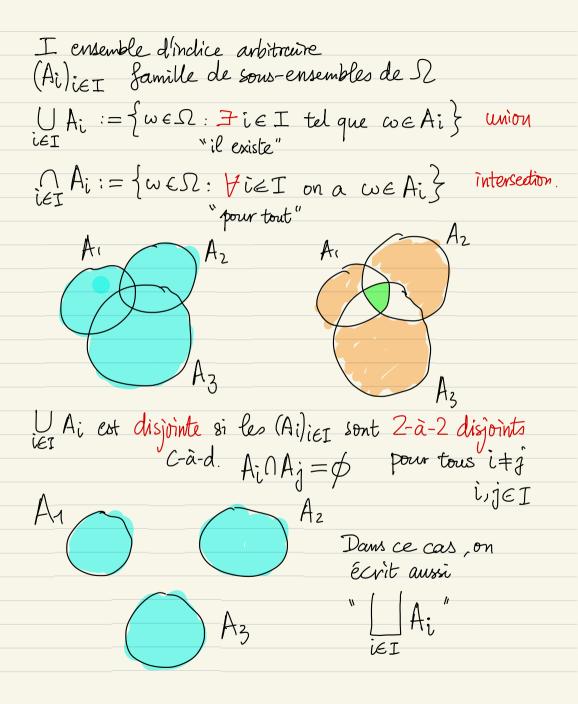
Variables aléatoires à densité Chap 5

Loi des grands nombres et applications Chap.6

Simulation des variables aléatoires. Chap 7.

Chap 1 Ensembles, Dénombrement et Dénombrabilité

§ 1,1 Opérations sur les ensembles
Un ensemble = collection d'objets Soit I un ensemble.
Soit I un ensemble.
$x \in \Omega$ "x appartient $\bar{a} \Omega$ "
tusemble vide φ
ACI sera appelé sons-ensemble ou partie de I
A_{i}
$AUB := \{ \omega \in \Omega : \omega \in A \text{ on } \omega \in B \} \text{ union}$
$A \cap B := \{ \omega \in \Omega : \omega \in A \text{ et } \omega \in B \}$ intersection
$A^c := \{ \omega \in \Omega : \omega \notin A \}$ complémentaire $A \setminus B := A \cap B^c$ différence de A avec B $A \triangle B := (A \setminus B) \cup (B \setminus A)$ différence symétrique
A/B:= A/B Cufference de 17 avec D
AAB := (A\B)U(B\A) afference symethique
9
A B Q
ACB ACB inclusion
pour tout $w \in A$ on a $w \in B$
$\begin{pmatrix} A & B \end{pmatrix}$



$$\begin{array}{ll} \underline{Distributivite} & \left(\bigcup_{i\in I}A_i\right)\cap B = \bigcup_{i\in I}\left(A_i\cap B\right) \\ \left(\bigcap_{i\in I}A_i\right)\cup B = \bigcap_{i\in I}\left(A_i\cup B\right) \\ \left(\bigcup_{i\in I}A_i\right)^C = \bigcap_{i\in I}A_i^C \\ \left(\bigcap_{i\in I}A_i\right)^C = \bigcup_{i\in I}A_i^C \\ \underline{Produit \ cart\'esien} \\ A\times B = \left\{(a,b): a\in A \ et \ b\in B\right\} \neq B\times A \\ Couple \ ordonn\'e \\ n\geqslant 2 \ entier \\ A^n = \ log \ produit \ A\times\cdots\times A \ n \ fois \\ \underline{P(\Omega)}:=\left\{A: A\subseteq\Omega\right\} \ l'ensemble \ de \ tous \ les \\ sous-enembles \ de \ \Omega \\ A\in \underline{P(\Omega)} \ et \ \Omega\in \underline{P(\Omega)} \\ \forall A\in \underline{P(\Omega)} \ on \ d'efinit \ la \ fonction \ indicatrice \ de \ A \\ 1_A: \Omega \to \mathbb{R} \qquad 1_A(x) = \left\{1 \ si \ x\in A \\ 0 \ si \ x\notin A \\ \left(x\in\Omega\setminus A\right) \end{array}$$

31.2 Dénombrement A ensemble Le nombre d'éléments que A contient s'appelle la cardinalité de A, notée (A) $|A| \in \mathbb{N} := \{0, 1, 2, \dots\}$ si A fini · Si A₁, ..., A_n finis et 2-à-2 disjoints, alors $|A_1 \cup \cdots \cup A_n| = \sum_{i=1}^{n} |A_i|$ • Si A_1, \dots, A_n finis $|A_1 \times \dots \times A_n| = \prod_{i=1}^n |A_i|$ Déf: f: A -> B injective si tout élément de B est l'image d'an plus un élément de A surjective si tont élément de B est l'image dan moins un élément de A bijective si à la fois înjective et surjective.

[Dans ce cas, l'application inverse f⁻¹ est définie] Si J A injection B alors
J A Surjection B alors alors |A| \leq |B| |A| > |B| I A bijection B alors [A] = [B]

Exercice 1.1 $\{0,1\}^{\Omega} := \{\text{fonctions } f:\Omega \rightarrow \{0,1\}^{2}\}$ $\varphi: P(\Omega) \longrightarrow \{0,1\}^{\Omega} \text{ est une bijection}$ $A \mapsto 1_{A}$ [Voir vidéo sur Moodle] $Si |\Omega| < \infty$, on a $|P(\Omega)| = 2^{|\Omega|}$ Remarque: l'ensemble E est dit infini s'il existe $X_0 \in E$ et une injection de E dans $E \setminus \{X_0\}$ E est dit fini Sinon $N^* = N \setminus \{0\}$. N in fini car $N \longrightarrow N^*$ est injective. $N \mapsto n+1$

Soit $|A| = n \ge 1$. $(a_1, \dots, a_k) \neq (a_k, \dots, a_i)$

Arrangement (sans répétition) de le éléments de A: (a1, ..., ap) un k-uplet ordonné d'éléments distincts de A.

Nb. d'arrangements de le Élèments de A:

 $= \begin{cases} n \times (n-1) \times (n-2) \times \cdots \times (n-k+1) & \text{si } 0 \leq k \leq n \\ 0 & \text{si } k > n \end{cases}$

Permutation de A: une bijection de A dans A.

Nb. de permutations de $A = n! = n \times (n-1) \times \cdots \times 1$

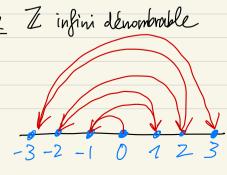
Notation: $G_n = \{ permutations de \{1,2,...,n \} \}$

Convertion: 0! = 1.

 $\{a_1,a_2,\cdots,a_k\}=\{a_2,a_k,\cdots,a_l\}$ Combincison de le éléments de A: un sons-ensemble {an, ..., ap } d'exactement le Eléments de A at, ..., ak sont distincts, mais non ordonnés Nb. de combinaisons de k éléments de $A = \binom{n}{k} = \binom{k}{n}$ Coefficient binomial $\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$ sio≤k≤n. Convention $\binom{n}{0} = 1$ $\binom{N}{b} = 0 \text{ si } k > n$ Binôme de Newton: Vx, y ER $(x+y)^{n} = \sum_{k=0}^{n} {n \choose k} x^{k} y^{n-k}$ § 1.3 Dénombrabilité Def: Un ensemble E est dit dénombrable s'il est fini on infini dénombrable c'est-à-dire en bijection avec IV.

Si E fini, énumérer ses éléments comme suite finie x, ..., xn Si E infini dénombrable, énumèrer comme une suite infinie (Xi) $N \rightarrow \mathbb{Z}$ Exemple Z infini dénombrable $n \mapsto \frac{n}{2}$ sin pair

 $-\frac{n+1}{2}$ si n impair.



Lemme: Un sons-ensemble (infini) d'un ensemble dénombrable est dénombrable. Tout ACN est dénombrable. <u>Lemme</u>: (1) $A \xrightarrow{\text{injection}} B$ avec B dénombrable $\Rightarrow A$ dénombrable (2) A surjection B avec A dénombrable => B dénombrable Theoreme 1.3. (1) Si Ai, ..., An sont dénombrables, le produit A, X... XAn l'est auxi (2) Si (Ai) i est une famille dénombrable (c-à-d. I est dénom.) d'ensembles dénombrables (c-à-d. Ai est dénom pour toutieI), alors l'union U Ai est dénombrable. L Voir vidéo pour la preuve J. Applications (1) IN X IN dénombrable preuve directe: (2) Q = { nb. rationnel } dénombrable $\begin{array}{ccc}
\mathbb{Z} \times \mathbb{N}^* & \longrightarrow & \mathbb{Q} \\
\uparrow (p, q) & \longmapsto & \frac{\rho}{q}
\end{array}$ denombrable. surjection

(3) Z[X]:= { polynomes à coeff, entiers} Zn[X]:={ polynômes à coeff. dans Z de degré n} bijection. Donc $\mathbb{Z}_n[x]$ dénombrable $\mathbb{Z}[x] = \bigcup_{n \in \mathbb{N}} \mathbb{Z}_n[x] = \bigcup_{n = 0} \mathbb{Z}_n[x]$ $= \bigcup_{n \in \mathbb{N}} \mathbb{Z}_n[x]$ Done $\mathbb{Z}[x]$ dénombrable. union disjointe est une union denombrable d'ensembles dénom. Théorème 1.7: R n'est pas dénombrable [Voir vidéo pour la prewe] Covollaire: [0,1[pas dénombrable $[0,1[\longrightarrow \{0,1\}]^{\mathbb{N}}]$ injection. $\varkappa = \sum_{k=1}^{+\infty} a_k 2^{-k}$ $a_k \in \{0,1\}, \forall k \ge 1$ X >> Son développement en base 2 > {0,13 N pas dénombrable Comme P(N) en bijection avec {0,12N, P(N) pas dénombrable - FIN SÉANCE 1

Chap 2. Espaces probabilisés (12, F, P)
§ 2.1 Axiomes des probabilités § 2.1.1 Espaces probabilisés Pour modéliser une expérience aléntoire: • L'espace d'état \(\Omega\) est un ensemble contenant tous les résultats possibles
§2.1.1 Espaces probabilisés
Pour modéliser une expérience aléutoire:
• L'espace d'état I est un ensemble contenant tous les
10000000 pt w
L'ensemble des événements 7 contient des parties de 2
un événement $= \{ \omega \in \Omega \text{ tel que "} \omega \text{ vérifie la propriété "} \}$
• La probabilité \mathbb{P} est une application de \mathbb{F} à $[0,1]$. $\forall A \in \mathbb{F}$ $\mathbb{P}(A) \in [0,1]$
∀ A ∈ F P(A) ∈ [0,1]
Triplet (12, Fr. P) appelé espace probabilisé
Triplet $(\Omega, \mathcal{F}_i, \mathbb{P})$ appelé es pace probabilisé Exemples (1) Lamer un dé végulier à 6 faces $\Omega = \{1, 2, 3, 4, 5, 6\}$
Le dé donne un nb. pair $A = \{2, 4, 6\} \subset \Omega$ $A \in \mathcal{F}$
$\mathbb{P}(A) = \frac{ A }{ \Omega } = \frac{3}{6} = \frac{1}{2} \text{probabilité uniforme}$
(2) Suite indivie de Dile ou Face équilibre
$P(A) = \frac{ A }{ \Omega } = \frac{3}{6} = \frac{1}{2} \text{probabilité uniforme}$ $(2) \text{ Suite infinie de Pile ou Face equilibre}$ $\Omega = \left\{ (\text{Ui})_{i \ge 1} : \text{Ui } \in \left\{ \text{Pile, Face} \right\}, \text{Vi} \ge 1 \right\}$
Les 2 premiers sont Pile: $B = \{(u_i)_{i \ge 1} \in \Omega : U_1 = U_2 = Pile^3\}$
Il y a an moins an Face: $C = \bigcup_{k=1}^{\infty} \{(u_i)_{i \ge 1} \in \Omega: U_k = Face \}$
R C.E.Fr k=1

ici 12 en bijection avec {0,13} , donc non dénombrable

Remarque Si Ω dénombrable, on prend toujours $\mathcal{F} = \mathcal{F}(\Omega)$ Mais si Ω non dénombrable, plus compliqué (voir plustard)

 $P\left(\underbrace{A_1 \cap A_2 \cap \cdots \cap A_n}_{\text{n}}\right) = \left(\frac{1}{2}\right)^n, \quad \forall n \ge 1$ ="n premiers lancers donnent Pile"

$$\mathbb{P}\left(\begin{array}{ccc} A_1 & A_2 & A_2 & A_n \end{array}\right) = \left(\frac{1}{2}\right)^n$$

· Propriétés pour F:

l'événement certain =
$$\Omega \in F$$

l'événement impossible = $\phi \in F$

"A et B sont tous les 2 vérifiés" -> ANB E F

"au moins un parmi A et B est vérifié" -> AUB EF

" A n'est pas vérifié" $\longrightarrow A^c \in \mathcal{F}$

 $\frac{\text{Déf}}{\text{Si}}$: On dit que F est une tribu (on une σ -algèbre) sur Ω si F est une partie non vide de $P(\Omega)$ vérifiant: (1) DEF (2) Si AEFi, alors AFEFi (Stabilité par passage au complémentaire)
(3) Si (Ai)_{iEM} est une suite d'éléments de Fi, alors
(= "famille dénumbrable")

U Ai EFI (Stabilité par union <u>dénombrable</u>)

Remarque: $\phi = \Omega^c \in \mathcal{F}$ $\bigcap_{i \in N} A_i = \left(\bigcup_{i \in N} A_i^c\right)^c \in \widetilde{\mathcal{H}}$

IL dénombrable $F = P(\Omega)$ Si 2 non démombrable, on prendra Fr une tribu construite à partir des événements de base en utilisant s passage au complémentaire union / intersection dénombrable

 \mathcal{F} + \mathcal{F} + \mathcal{F} + \mathcal{F} (Ω) cad. \mathcal{F} \mathcal{F} + \mathcal{F} (Ω)

· <u>Propriétés de P</u>: Interprétation frêquentiste: Répéter N fois, N grand.

nb. de fois l'évenement A vérifié NA ∈{0,1,...,Ny

 $\mathbb{P}(A) \approx \frac{NA}{\Lambda}$

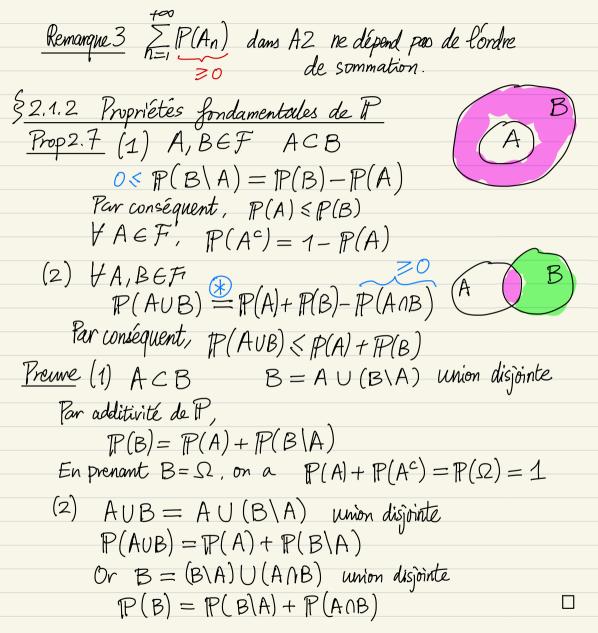
 $SA=\Omega$, $N_{\Omega}=N \rightarrow P(\Omega)=1$

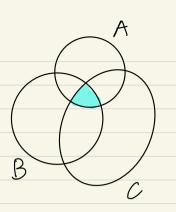
Si A, BEF, ANB=
$$\phi \Rightarrow N_{AUB} = N_A + N_B$$
" $P(AUB) = P(A) + P(B)$ "

Déf Axiomes des probabilités Ω ensemble non vide muni d'un ensemble d'événements (tribu) Fi Une fonction $P: \mathcal{F} \longrightarrow [0,1]$ est appelée (mesure de) probabilité $A1: \mathbb{P}(\Omega) = 1$

A2 (V-additivité) Pour tt suite
$$(A_n)_{n\geq 1}$$
 d'événements de \mathcal{F}

Remarque 1:
$$P(\phi) = 0$$
 car $P(\phi) = \sum_{n=1}^{+\infty} P(\phi)$ par A2
Remarque 2: P vérifie l'additive finie:
Si A., ..., Are sont R evérements disjoints $(="2-\hat{a}-2 \text{ disjoints"})$
alors $P(A_1 \cup \dots \cup A_R) = \sum_{n=1}^{\infty} P(A_j)$
Prewe: Appliquer A2 à $(B_n)_{n\geq 1}$ où $B_n = A_n$ Si $n \leq R$
 $= \phi$ si $n > R$.





(AUB)UC P(AUBUC) # P(AUB)+P(C)-P(AUB) nC)

(*) TP(A)+IP(B)-IP(AAB)+IP(C)-IP((AAC)U(BAC))

(*) = TP(A)+ (P(B) - P(AOB)+ P(C)- (P(AAC) - P(BAC) + P((AAC) (BAC))

= P(A) + P(B) + P(C) - P(AAB) - P(AAC)- TP(BAC) + TP(AABAC)

Cas général Prop 2.9 Formule d'inclusion-exclusion

A1, ..., An E Fi

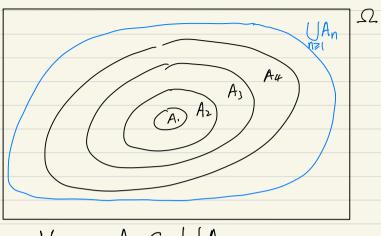
 $P(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{k=1}^n \sum_{J \subseteq \{1,\cdots,n\}} (-1)^{k+1} P(\bigcap_{i \in J} A_i)$ L Voir vidéo dans Moodle J

Andrew -

Application: Exemple 2.19 Père Noël secret [Voir vidéo dans Moodle].

Prop 2.10 Continuité par le bas et par le haut des probabilités (1) (An)_{n ≥1} Suite croissante d'événements

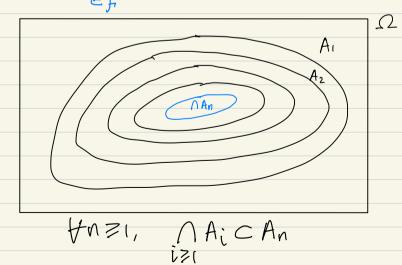
(c-à-d An C Anti, th=1) alors $P(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(A_n)$ $P(A_n) \leqslant P(A_{n+1})$



Ynzi An C U An

(2)
$$(A_n)_{n\geq 1}$$
 suite décroissante d'événements
(c-à-d. $A_{n+1} \subset A_n \quad \forall n \geq 1$)

Alors $P(\bigcap_{n\geq 1} A_n) = \lim_{n\to +\infty} P(A_n)$ $P(A_n) \geq P(A_{n+1})$



[Voir vidéo sur Moodle]

Corollaire 2.11

$$(A_{n})_{nz}, \text{ suite d'Evenements} \quad \text{ non necessairement croissante on décrossante}$$

$$P(\overset{\circ}{\cup} A_{n}) = \underset{n\to\infty}{\lim} P(\overset{\circ}{\cup} A_{k})$$

$$P(\overset{\circ}{\cap} A_{n}) = \underset{n\to\infty}{\lim} P(\overset{\circ}{\cap} A_{k})$$

$$Preuve: Poser $B_{n} = \overset{\circ}{\cup} A_{k}$

$$(B_{n})_{nz_{1}} \text{ suite croissante d'événements}.$$

$$B_{n} \subset B_{n+1} \text{ car } \overset{\circ}{\cup} A_{k} \subset \overset{\circ}{\cup} A_{k} = A_{n+1} \cup (\overset{\circ}{\cup} A_{k})$$

$$Par Prop 2.10 \quad P(\overset{\circ}{\cup} B_{n}) = \underset{n\to+\infty}{\lim} P(B_{n}) = \underset{n\to+\infty}{\lim} P(\overset{\circ}{\cup} A_{k})$$

$$Or \overset{\circ}{\cup} A_{n} = \overset{\circ}{\cup} B_{n}$$

$$n=1 \quad n=1$$

$$Car \quad B_{n} \subset \overset{\circ}{\cup} A_{n} \quad \text{et } A_{n} \subset B_{n} \quad \text{pour tout } n \ge 1$$

$$Donc \quad P(\overset{\circ}{\cup} A_{n}) = \underset{n\to+\infty}{\lim} P(\overset{\circ}{\cup} A_{k})$$

$$2^{e} \quad \text{formule} : C_{n} = \overset{\circ}{\cap} A_{k}$$

$$k=1$$$$

exercice: compléter la preuse.

Exemple 2.13 Suite înfinie de Pile on Face Equilibré Ak = "k" lancer est Pile"

$$A = \bigcap_{k=1}^{\infty} A_k = \text{"on n'obtient que des Piles dans la suite înfinie"}$$

$$P(A) = \lim_{n \to +\infty} P(\bigcap_{k=1}^{n} A_k) = \lim_{n \to +\infty} \left(\frac{1}{z}\right)^n = 0$$

Donc la probabilité d'avoir au moins un Face vaut
$$1$$
 $(P(A^c)=1)$

Un Evénement B E F de probabilité P(B)=1 est appelé presque sur

Si
$$\Omega \cong \{0,13^N \quad \text{Pile} = 0^n \}$$

$$A = \{(0,0,0,0,\dots)\} \neq \emptyset$$

$$P(A) = 0$$

$$A^c \neq \Omega \quad P(A^c) = 1$$

Pour un événement BEF,

Si
$$P(B) = 1$$
, on n'a pas nécessoirement $B = \Omega$
Si $P(B) = 0$, $B = \phi$

$$\begin{array}{c} \begin{array}{c} Rappel: \ (\Omega, F, P) \\ proba \ P: F \longrightarrow \text{[0,1]} \\ A \mapsto P(A) \in \text{[0,1]} \\ (A1): \ P(\Omega) = 1 \\ (A2): \ Soit \ (A_n)_{n\geqslant 1} \ une \ suite \ d'événements \ 2-à-2 \ disjoints \\ P(\ L | A_n) = \sum_{n\geqslant 1} P(A_n) \end{array} \quad \begin{array}{c} \nabla\text{-additivité} \\ P(A_n) = \sum_{n\geqslant 1} P(A_n) \end{array} \quad \begin{array}{c} \nabla\text{-additivité} \\ P(A_n) = \sum_{n\geqslant 1} P(A_n) \end{array} \quad \begin{array}{c} \nabla\text{-additivité} \\ P(A_n) = \sum_{n\geqslant 1} P(A_n) = P(A_n) \end{array} \quad \begin{array}{c} P(A_n) = P(A_n) \\ P(A_n) = P(A_n) = P(A_n) \end{array} \quad \begin{array}{c} P(A_n) = P(A_n) \\ P(A_n) = \sum_{n\geqslant 1} P(A_n) = P(A_n) \end{array} \quad \begin{array}{c} P(A_n) = P(A_n) \\ P(A_n) = \sum_{n\geqslant 1} P(A_n) = P(A_n) \end{array} \quad \begin{array}{c} P(A_n) = P(A_n) \\ P(A_n) = P(A_n) = P(A_n) = P(A_n) \end{array} \quad \begin{array}{c} P(A_n) = P(A_n) = P(A_n) \\ P(A_n) = P(A_n) = P(A_n) = P(A_n) = P(A_n) = P(A_n) \end{array} \quad \begin{array}{c} P(A_n) = P(A_n$$

Par sons-additivité de
$$P$$
 $P\left(\bigcup_{n=1}^{\infty}\left(\bigcap_{k=n}^{\infty}A_{k}\right)\right) \leq \sum_{n=1}^{\infty}P\left(\bigcap_{k=n}^{\infty}A_{k}\right) = \sum_{n=1}^{\infty}0 = 0$

En passant ou complémentaire

 $P\left(\bigcap_{n=1}^{\infty}\left(\bigcup_{k=n}^{\infty}A_{k}^{c}\right)\right) = 1$
 $= \text{"} \forall n \geq 1, \exists k \geq n \text{ ty le k}^{e} \text{ est Face}"$
 $= \text{"} il \text{ y a une înfinite de Face}"$

Ceci est un événement presque sûr

 $\frac{22.2}{2.2}$ Le cas d'espaces d'états dénombrable.

Dans cette partie, \mathcal{Q} dénombrable non vide

 $F = P(\Omega)$

caractériser P par une densité discrète

Dif (Densité discrète)

On appelle densité discrète sur \mathcal{Q} toole fonction $p: \Omega \rightarrow \mathbb{R}$

qui satisfait $\int_{\mathbb{R}} p(\omega) \geq 0 \quad \forall \omega \in \Omega$
 $\sum_{k=0}^{\infty} p(\omega) \geq 0 \quad \forall \omega \in \Omega$
 $\sum_{k=0}^{\infty} p(\omega) \geq 0 \quad \forall \omega \in \Omega$

Ros $P: P(\Omega) \rightarrow \mathbb{R}$

définit une proba sur $P(\Omega)$

 $A \mapsto \mathbb{P}(A) := \sum_{\omega \in A} \mathcal{P}(\omega)$

<u>Preuve</u>: $P(Ω) = \sum_{ω ∈ Ω} p(ω) = 1$ Soit $(Aκ)_{k∈ω}$ une suite de sous-ensembles de Ω 2-à-2 dijoints Pose A = WAK $\mathbb{P}(\bigcup_{k \in A} A_k) = \sum_{\omega \in A} p(\omega) = \sum_{k \in N} \left(\sum_{\omega \in A_k} p(\omega)\right) = \sum_{k \in N} \mathbb{P}(A_k)$ $p(\omega) \ge 0$, $\forall \omega \in \Omega$ \Rightarrow On peut sommer par paquets $(A_k)_{k \in \omega}$ disjoints La <u>réciproque</u> est aussi vraie: Soit \mathbb{P} une proba sur Ω , $p: \Omega \to \mathbb{R}$ est une densité discrète sur Ω $\omega \mapsto p(\omega) := \mathbb{P}\left(\frac{\{\omega\}}{\alpha}\right)$ L'Singleton {w}
(Evenement élémentaire) $\frac{\text{Déf}(\text{Equiprobabilité})}{\text{On définit}} \quad \text{Soit } \Omega \text{ un ensemble fini}$ $P(A) := \frac{|A|}{|\Omega|} \quad \forall A \subset \Omega$ Il est une probabilité, appelée probabilité uniforme sur s Remarque 1: densité discrète associée $p(\omega) = \mathbb{P}(\{\omega\}) = \frac{1}{|\Omega|}$ ne dépend pas de ω Remarque 2: Soit Ω fini et \mathbb{P} une proba. Sur $\mathbb{P}(\Omega)$ tq. $\mathbb{P}(\omega) = \mathbb{P}(\{\omega\}) = \mathbb{C}$ ne dépend pas de $\omega \in \Omega$. Alors \mathbb{P} est la probabilité uniforme sur Ω (nécessairement $c = \frac{1}{101}$)

Remarque 3: Si 12 est înfini (dénombrable), on ne peut pas définir de proba uniforme Sip(w) = a, Y WED alm $\sum p(\omega) = \{+\infty \text{ si } a > 0 \}$ ne vant pas 1 Exemple: choisiv un entier naturel au hasard n'est jamais de façon uniforme (Il n'existe pas de probabilité uniforme sur N)

Par exemple, $P(\{n\}) = 2^{-(n+1)}$ définit une proba sur N, mais elle n'est pas uniforme. Exemple 2.18 Paradoxe des anniversaires [vidéo courte] Exemple 2.19 Père Noël secret [vidéo courte] § 23 Probabilité conditionnelle et indépendance § 2.3,1 Probabilité conditionnelle (Ω, F, P), Ω n'est plus supposé dénombrable Déf. Soient A,B & Fr avec P(B) >0 On appelle probab, conditionnelle de A sachant B $P(A|B) := \frac{P(AnB)}{P(B)}$ Remarque: Interprétation fréquentiste $P(A) \approx \frac{NA}{N}$ $P(A|B) \approx \frac{NAB}{NB} = \frac{\frac{NAB}{N}}{\frac{NB}{N}} \approx \frac{P(A)B}{P(B)}$

Exercice 2.21: La fonction P(·IB): AEF -> P(AIB) est une proba. sur (Ω, \mathcal{F}) $P(A^{C}|B) = 1 - P(A|B)$ $P(A|B^c) \neq 1 - P(A|B)$ $P(A_1 \cap A_2) = P(A_1) \times P(A_2 | A_1)$ par definition Prop 2.22 (proba conditionnelle en chaîne) Soient 122 et A1, ..., An des Evénements tq. P(A1 / A2 / ... / An-1) > 0. Alors $\mathbb{P}(\mathring{\Lambda}_{A_k}) = \mathbb{P}(A_1) \times \mathbb{P}(A_2|A_1) \times \cdots \times \mathbb{P}(A_n|A_1 \cap A_2 \cap \cdots \cap A_{n-1})$ $= \mathbb{P}(A_1) \times \prod_{k=2}^n \mathbb{P}(A_k | A_1 \cap A_{k-1})$ <u>Preuve</u>: vidéo courte Application:

tiver deux bonles sans remise

i=1,2

Ai = "je tire une boule noir au i tour" $A = A_1 \cap A_2 =$ je ne tire pas la boule blanche $\mathbb{P}(A) = \mathbb{P}(A_1) \, \mathbb{P}(A_2 \, | \, A_1)$ $=\frac{4}{5}x\frac{3}{4}=\frac{3}{5}$ Prop Soit (Bi)iEI une partition dénombrable de Q (cést-à-dire I est dénombrable Bi \cap Bj = ϕ pour tous $i \neq j$, et $\bigsqcup_{i \in I}$ Bi = Ω)

Pour un événement A E Fr, on a la formule de décomposition $P(A) = \sum_{i \in I} P(A \cap B_i)$ Si de plus $\forall i \in I$, $\mathbb{P}(Bi) > 0$, on a la formule des proba totales $\mathbb{P}(A) = \sum_{i \in I} \mathbb{P}(A|B_i) \mathbb{P}(B_i)$

Preuve $A = A \cap \Omega = A \cap (\bigcup B_i) = \bigcup (A \cap B_i)$ disjointes

Par
$$\sigma$$
-additivité de P , $P(A) = \sum_{i \in I} P(A \cap B_i)$
Si $P(B_i) > 0$, $P(A \cap B_i) = P(A \mid B_i) P(B_i)$

Théorème (Formule de Bayes) Si A, B & F avec P(A) >0 et P(B)>0

Alors
$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

 $\frac{Prewe}{P(B|A)P(A)} = P(B \cap A) = P(A \cap B) = P(A|B)P(B)$

Exemple: Test d'un virus

On sait que 5 personnes sur 10000 ont le virus.

On fait ce test sur un individu au hasard, avec un résultat positif Question: avec quelle confiance peut-on affirmer qu'il soit malade ?

$$A = \text{"résultat positif"}$$

$$B = \text{"l'individu choisi est malade"}$$

$$P(B) = \frac{5}{10000} \qquad P(B^c) = 1 - P(B) = \frac{9995}{10000}$$

$$P(A) = P(A|B)P(B) + P(A|B^c)P(B^c)$$

$$P(A|B) = 1 \qquad \text{et } P(A|B^c) = 0,02$$

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B)}$$

$$= \frac{P(A|B)P(B)}{P(A|B)P(B)} + P(A|B^c)P(B^c)$$

$$= \frac{1 \times 0,0005}{1 \times 9,0005} \approx 0,025$$
Ce test donne en rédité beaucoup de faux positifs.

Continuation sur l'exemple test du virus
$$A = \text{"test positif"}$$

$$B = \text{"a le virus"}$$

$$P(A|B) = 1 \qquad P(A|B^c) = \alpha \qquad \text{taux de faux positif}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A|B)P(B)}{P(A|B)P(B)} + P(A|B^c)P(B^c)$$

$$= \frac{B}{\beta + \alpha(1-\beta)} = \frac{1}{1 + (1-\beta)\frac{\alpha}{\beta}}$$

$$\approx \frac{1}{1+\frac{\alpha}{\beta}} \qquad \text{comme } 1-\beta \approx 1$$

Si
$$\propto \ll \beta$$
 $\frac{\alpha}{\beta} \approx 0$ alors $P(B|A) \approx 1$
Si $\propto \gg \beta$ $\frac{\alpha}{\beta}$ très grand alors $P(B|A) \approx \frac{1}{\frac{\alpha}{\beta}} \approx 0$
Ici $\propto = 0,02$ $\frac{\alpha}{\beta} = 40$
 $\beta = 0,0005$ $P(B|A) \approx 0,025$

§ 2.3.2 Indépendance d'évênements

Déf:
$$(\Omega, F, P)$$
 espace probabilisé
A, B \in Fr sont dit indépendants si $P(A \cap B) = P(A) P(B)$

Remarque 1: Si
$$P(A) > 0$$
, cela signifie $P(B|A) = P(B)$
Si $P(B) > 0$, cela signifie $P(A|B) = P(A)$
"l'un soit vérifié ne modifie par la probab. de l'autre"

Remarque 2: indépentre A et B
$$\Rightarrow$$
 A et B disjoints
Si P(A) >0, P(B) >0, alors l'indép. implique que
P(AnB) >0, donc AnB \Rightarrow .

Remarque 3: Si A, B indép, alors
$$A^c$$
 et B le sont aussi car $P(A^c \cap B) = P(B \setminus (A \cap B))$

$$= P(B) - P(A \cap B)$$

$$= P(B) - P(A) P(B)$$

= $P(B) (1 - P(A)) = P(B) P(A^c)$

De même, A et B° sont îndép, aînsi que A° et B°

Déf. Indépendance d'événements \neq Indépendance 2-a-2Soit (Ai) iet une famille d'événements d'un espeue proba. (Ω, F, P) où l'ensemble d'indice I est arbitraire Cette famille d'événements est dite indépendante si pour tout sous-ensemble fini $J \subseteq I$ $(|J| \ge 2)$, on a $P(\bigcap A_j) = \prod P(A_j)$ $j \in J$

Pour l'indép de n événements A_1, \dots, A_n , il ne suffit pas de vérifier que $P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1) P(A_2) \dots P(A_n)$ Il faut montrer que cette propriété de factorisation est vraie pour toute sous-famille.

Exemple: Deux lancers de Pile/Face $A = \{ \text{ pile an 1e lancer } \}$ $B = \{ \text{ pile an 2nd lancer } \}$ $C = \{ \text{ même résultat aux 2 lancers} \}$ $P(A) = P(B) = \frac{1}{2}$ P(C) = P(" pile pile") + P(" face face") $= \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ $P(A \cap B \cap C) = P(\text{" pile pile"}) = \frac{1}{4} + P(A)P(B)P(C) = \frac{1}{8}$ ($P(C \mid A \cap B) = 1 + P(C)$) $P(A \cap B) = P(\text{" pile pile"}) = \frac{1}{4} = P(A)P(B)$ $P(A \cap C) = P(A)P(C) = P(B \cap C) = P(B)P(C)$

Conclusion: A, B, C sont indép 2-à-2 mais non indép.

Prop. Si (A_i, \dots, A_n) est une famille d'événements indép, il en est de même pour les 2^n familles (A_1, \dots, A_n) ovec $A_i^c = A_i$ ou A_i^c , $1 \le i \le n$ Preuve Il suffit de montrer que si A_1, \dots, A_n sont indép, alors A_1^c , A_2, \dots, A_n le sont auxi $\forall \{i_1, \dots, i_p\} \subset \{2, \dots, n\}$ $\mathbb{P}(A_{i}^{c} \cap A_{i_{1}} \cap \dots \cap A_{i_{p}}) = \mathbb{P}(A_{i_{1}} \cap \dots \cap A_{i_{p}}) - \mathbb{P}(A_{i} \cap A_{i_{1}} \cap \dots \cap A_{i_{p}})$ $= \mathbb{P}(A_{i_1}) \cdots \mathbb{P}(A_{i_p}) - \mathbb{P}(A_{i_1}) \mathbb{P}(A_{i_1}) \cdots \mathbb{P}(A_{i_p})$ $= \mathbb{P}(A_1^c) \mathbb{P}(A_{i_1}) \cdots \mathbb{P}(A_{i_p})$ Ce calcul est suffisant pour dive que AC, Az, ..., An sont indép. \square Exemple 2.32 [vidéo sur Moodle]

lors de n tentatives indép. de proba de succès p \(\varepsilon 0,1 \) $\mathbb{P}(il\ y\ a\ exactement\ k\ succes) = \binom{n}{k}p^k\left(1-p\right)^{n-k},\ 0 < k < n$ ~> loi binomiale (voiv chap.3) Chap II Variables aléatoires discrètes

"variable aléatoire" (v.a.) est une quantité associée au résultat

d'une expérience aléutoire

Exemples: · lancer 2 dés -> la somme des résultats des 2 dés

· Suite es de Pile / Face -> Nb. de Pile avant d'obtenir Face pour la 1º fois.

• Tirer un nombre ω au hasard dans $J_{0,1}$ [\rightarrow le plus petit entier $\geq \frac{1}{\omega}$

Evénement + variable aléatoire On pent construire des événements à partir de v.a.

exemple: $\{\text{la somme des résultats des 2 dés } \geq 5\} \in \mathcal{F}_{\epsilon}$

 $\S_{3.1}$ V.a. discrètes (Ω, F, P) espare probabilisé E ensemble quelconque

 $\frac{\text{Déf. On appelle v.a. discrète toute fonction } X: \Omega \to E \ tg.}{X(\Omega) := \{X(\omega) : \omega \in \Omega \} \text{ est dénantirable}}$

et ty. pour tout $x \in X(\Omega)$, les ensembles $\{\omega \in \Omega : X(\omega) = x^2 \text{ sont des événements de } F$

Si E=R, X v.a. réelle Si E=Rⁿ, X vecteur aléatoire de dimension N

Remarue: YACE, {wED: X(w) EA} EF

car { w ∈ si : x /w) ∈ A }

 $= \{ \omega \in \Omega : X(\omega) \in A \cap X(\Omega) \}$

 $= \bigcup_{\mathbf{x} \in \mathbf{A} \cap \mathbf{x}(\mathbf{x})} \{ \omega \in \mathbf{x} : \mathbf{x}(\omega) = \mathbf{x} \} \in \mathbf{F}$

¹ dénombrable

Exemples: 1) Fonction constante
$$c \in E$$
 fixe $c \in X(\omega) = c$ pour tout $c \in X$. 2) Soit $c \in X$. L'indicatrice de l'événement $c \in X$. L'indicatrice de l'événement $c \in X$. L'indicatrice de l'événement $c \in X$. Toute v.a. réelle $c \in X$ qui ne prend que les valeurs $c \in X$ récessairement une fonction indicatrice $c \in X$. Be $c \in X$. $c \in X$. Toute une v.a. de Bernoulli.

Notation: $c \in X \in A$ = $c \in X^{-1}(A) = c \in X$. $c \in X$. c

$$\max \left(X, X \right) : \omega \mapsto \max \left\{ \times (\omega), Y(\omega) \right\}$$

$$\min \left(X, Y \right) : \omega \mapsto \min \left\{ \times (\omega), Y(\omega) \right\}$$

$$(2) Si \left(X_n \right)_{n \in \mathbb{N}} \text{ est une Swite de } v.a. \text{ à valeurs dans } \mathbb{R} = \mathbb{R} \cup \left\{ \pm \omega \right\}$$

$$definies sur le même espace probabilisé (n, F, \mathbb{P}),
$$\sup_{n \in \mathbb{N}} X_n : \omega \mapsto \sup_{n \in \mathbb{N}} \left\{ X_n(\omega), n \in \mathbb{N} \right\}$$

$$\inf_{n \in \mathbb{N}} X_n : \omega \mapsto \inf_{n \in \mathbb{N}} \left\{ X_n(\omega), n \in \mathbb{N} \right\}$$

$$\lim_{n \in \mathbb{N}} X_n : \omega \mapsto \lim_{n \to \infty} X_n(\omega) \text{ is la limite existe pour tout } \omega \in \Omega$$

$$\lim_{n \to \infty} X_n : \omega \mapsto \sum_{n \in \mathbb{N}} X_n(\omega) \text{ is la somme est bien definie pour tout } \omega \in \Omega$$

$$\lim_{n \in \mathbb{N}} X_n : \omega \mapsto \sum_{n \in \mathbb{N}} X_n(\omega) \text{ is la somme est bien definie pour tout } \omega \in \Omega$$

$$\lim_{n \in \mathbb{N}} (par example si X_n(\omega) \ge 0, \forall n \in \mathbb{N})$$

$$\lim_{n \in \mathbb{N}} X : \Omega \to E \text{ une } v.a. \text{ discrete, on appelle for de } X$$

$$\lim_{n \to \infty} X_n : \omega \mapsto \sum_{n \in \mathbb{N}} X_n(\omega) \text{ is la somme est bien definie pour tout } \omega \in \Omega$$

$$\lim_{n \to \infty} (par example si X_n(\omega) \ge 0, \forall n \in \mathbb{N})$$

$$\lim_{n \to \infty} (par example si X_n(\omega) \ge 0, \forall n \in \mathbb{N})$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to \infty} (par example si X_n(\omega)) \text{ est } monotone$$

$$\lim_{n \to$$$$

 $P_X(x) = 0 \quad \forall x \notin \{0,1\}$

Si
$$p_{\times}(1) = p_{\times}(0) = \frac{1}{2} = P(A)$$
, alors $X = 1_A$ et $1 - X = 1_{AC}$ ont la même loi $C = a - d$. $M_{\times} = M_{1-\times}$ Mais $X = X = S$ ont jamais égales

Prop 3.7 [vidéo sur Moodle] P_{X} est une densité discrète sur $X(\Omega)$ et est nulle en dehors de $X(\Omega)$ \mathcal{U}_{X} est la probabilité sur $(X(\Omega), P(X(\Omega)))$ associée à P_{X} êtendue à une probabilité sur (E, P(E)) par $\mathcal{U}_{X}(A) = \sum_{X \in A} P_{X}(X)'' = \sum_{X \in A} P_{X}(X)$, $\forall A \in E$ $X \in A \cap X(\Omega)$

Exemple 3.11 [vidéo sur Movdle]

Rappel: Un événement AEF de proba P(A)=1 est applé presque sûr Déf: Deux v.a. X et X' définies sur le même espace (1, F, P) et à valeurs dans le même ensemble E sont dites

presque sûrement égales, si $\mathbb{P}(X=X') = \mathbb{P}(\{\omega \in \Omega : X(\omega) = X'(\omega)\}) = 1$

Autrement dit, X et X' différent sur un ensemble de proba nulle $\mathbb{P}(X \neq X') = 0$

Exercice 3.9: Montrer que si X et X' sont presque surement égales alors X et X' ont la même loi (et la même densité discrète) $UX = UX' \quad \text{et} \quad P_X = P_{X'}$

[Vidéo sur Moodle]

∴ X et X'ont même loi

→ X et X'sont presque sûrement égales

Deux v.a. réelles définies sur les espaces probabilisés différents peuvent avoir la même loi.

Voir Exemple 3.8 du polycopié.

FIN SÉANCE 4

Exemple: Pile / Face

0 1

V.a.
$$X: \Omega = \{0,1\} \longrightarrow \{0,1\}$$
 $X(\omega) = \omega$

Dé à 6 faces $A = "le \ résultat \ est \ pair"$

V.G. $Y = 1_A: \Omega' = \{1,2,3,4,5,6\} \longrightarrow \{0,1\}$
 $Y(\omega) = \{0\}$

Si $\omega = 1,3,5$

Si $\omega = 2,4,6$

X et Y définies sur deux espaces d'états différents

Pourtant, X et Y ent la même loi

 $P_X(0) = P_X(1) = \frac{1}{2}$
 $P_Y(0) = P(Y = 0) = P(A^c) = \frac{|A^c|}{|\Omega'|} = \frac{3}{6} = \frac{1}{2}$
 $P_Y(1) = P(Y = 1) = P(A) = \frac{|A|}{|D'|} = \frac{1}{2}$

§ 3.2 Indépendance des v.a. § 3.2.1 Loi jointe et lois marginales X: D→E Y: D→F v.a. discrètes Le couple $Z = (X, Y) : \Omega \rightarrow E \times F$ est une V.a. (discrète) La loi de Z, notée $\mu_{X,Y}$, est appelée boi jointe de Xet Y(MX, y est une proba sur EXF) Les lois ux et uy sont appelées loi marginales Si X et Y sont des v.a. discrètes, (X,Y) l'est aussi La densité discrète $\mathcal{P}_{X,Y}(x,y) = \mathbb{P}((X,Y) = (x,y)) = \mathbb{P}(X=x,Y=y)$ $\{X=x, Y=y\} = \{X=x\} \cap \{Y=y\}$ S'appelle densité jointé $P_{X}(x) = P(X=x)$ et $P_{Y}(y) = P(Y=y)$ sont densités marginales Prop $\forall x \in E$ $P_X(x) = \sum_{y \in F} P_{X,Y}(x,y)$ XEE = XEENX(D) $\forall y \in F$ $P_{y}(y) = \sum_{x \in E} p_{x,y}(x,y)$ <u>Preme</u>: $\{Y=Y\}$, $Y \in Y(\Omega)$ est use partition denombrable de Ω

$$= \sum_{y \in \gamma(Q)} \mathbb{P}((x,y) = (x,y))$$

$$= \sum_{y \in \gamma(Q)} \mathbb{P}_{x,y}(x,y) \quad \text{car si } y \notin \gamma(Q),$$

$$y \in \mathbb{F} \qquad \qquad \{(x,y) = (x,y)\} \subset \{y = y\} = \emptyset$$

$$\text{alors } \mathbb{P}_{x,y}(x,y) = 0. \quad \qquad [$$

$$\underline{\text{Conclusion: Lois marginales sont determinees par la loi jointe }} \quad \text{mais pas réciproquement (voir l'exemple 3.14)}$$

$$\underline{\text{Génévalisation: }} \quad X_1, \dots, X_n \quad \text{v.a. discrètes définies sur } \Omega$$

$$\underline{\text{a valeurs dans }} \quad E_1, \dots, E_n \quad \text{(X_1, \dots, X_n): } \Omega \rightarrow E_1 \times \dots \times E_n \quad \text{eot une v.a. discrète}$$

$$\text{La densité jointe } \quad \mathbb{P}_{X_1, \dots, X_n}(x_1, \dots, x_n) = \mathbb{P}(X_1 = x_1, \dots, X_n = x_n)$$

$$\forall x_i \in E_i \quad P_{X_i}(x_i) = \sum_{j \neq i} \sum_{j \in E_j} \mathbb{P}_{X_i, \dots, X_n}(x_1, \dots, x_n)$$

$$1 \leqslant i \leqslant n \quad \uparrow \quad j \neq i \quad z_j \in E_j$$

$$\text{densité marginale}$$

3.2.2. Indépendance de v.a.

Déf Soient X1, ···, Xn des v.a. définies sur Ω, à valeurs dans

E1, ···, En, Elles sont dites îndép. Si pour tout choix

de sous-ensembles A1CE1, ···, AnCEn, on α

IP(X1EA1, ···, XnEAn) =

ÎT IP(XiEAi) **

Remarque $\forall \{i_1, \dots, i_k\} \subset \{1, 2, \dots, n\}$ on pose Aj = Ej $j \notin \{i_1, \dots, i_k\}$ $\{X_j \in A_j\} = \Omega$ pour ces j) $\mathbb{P}(X_{i_1} \in A_{i_1}, \cdots, X_{i_k} \in A_{i_k})$ $= \mathbb{P}(X_1 \in A_1, \dots, X_n \in A_n)$ $\stackrel{n}{=} \mathbb{P}(X_i \in A_i) = \underset{\ell=1}{\overset{k}{\prod}} \mathbb{P}(X_{i_{\ell}} \in A_{i_{\ell}})$ Si X1, ···, Xn sont îndép., toute sorus-famille Xi, ···, Xix le sont aussi Déf: Soient (Xi) i EI des v.a. définies sur le même (N, F, P)
où l'ensemble des indices I est arbitraire.

Ces v.a. sont dites indép si pour tout sons-ensemble JCI fini (IJ/Lx), les v.a. (Xj) jeJ sont indép. Proposition 3.17 [Vidéo sur Moodle]

 $P_{X,y}(x,y) = P_X(x)P_y(y)$, $\forall x \in E, y \in F$

X et Y sont îndép si et seulement si

Soient $X: \Omega \rightarrow E$ et $Y: \Omega \rightarrow F$ des v.a. discrètes

Généralisation: $X_1:\Omega \to E_1, \dots, X_n:\Omega \to E_n$ indép si et seulement si $P_{X_1,\dots,X_n}(x_1,\dots,x_n) = \prod_{i=1}^n P_{X_i}(x_i) \qquad \forall (x_1,\dots,x_n) \in E_1 \times \dots \times E_n$

Exemple 3.14 [Vidéo sur Moodle] n boules, de 1 à n, dans une urne 1) On tive 2 boules awec remise. X1, X2 les numéros des bonles tivées $P_{X_1,X_2}(\chi_1,\chi_2) = \frac{1}{n^2}, \forall (\chi_1,\chi_2) \in \{1,2,\dots,n\}^2$ $P_{X_1}(x) = P_{X_2}(x) = \frac{1}{n} \quad \forall 1 \le x \le n$ X_1 et X_2 sont indép comme $P_{X_1,X_2}(x_1,x_2) = P_{X_1}(x_1)P_{X_2}(x_2)$ 2) On tire 2 boules sans remise $X_1, X_2 \text{ les numéros des boules tirees } X_1 \neq X_2'$ $P_{X'_{1},X'_{2}}(x_{1},x_{2}) = \frac{1}{n(n-1)} \quad \forall (x_{1},x_{2}) \in \{1,2,...,n\}^{2}$ $t_{1},x_{2},x_{1} \neq x_{2}.$ $P_{X'_{1}}(x) = P_{X'_{2}}(x) = \frac{1}{n} \quad \forall 1 \leq x \leq n$ $X'_{1} \text{ et } X'_{2} \text{ ne sont par indép}.$ $Conclusion: \quad X_{1} \stackrel{\text{(bi)}}{=} X'_{1} \quad \text{MAis} \quad (X_{1},X_{2}) \quad \text{n'a par la même loi}$ $X_{2} \stackrel{\text{(bi)}}{=} X'_{2} \quad \text{que} \quad (X'_{1},X'_{2})$

Conclusion:
$$X_1 \stackrel{\text{(boi)}}{=} X_1'$$
 $X_2 \stackrel{\text{(boi)}}{=} X_2'$
 $X_2 \stackrel{\text{(boi)}}{=} X_2'$
MAis (X_1, X_2) n'a pas la même lo que (X_1, X_2)

Une famille de v.a. indép. divisée en sous-familles disjointes reste des v.a. indép.

Pour simplifier les notations, on regarde seulement le cas de 2 paquets:

Proposition 3.19 [Vidéo sur Moodle] (Indép par paquets) Soient X1, ..., Xn des v.a. (disciètes) indép, et soient $I = \{i_1, \dots, i_k\}$ et $J = \{j_1, \dots, j_k\}$ des parties non vides et disjointes de {1,2,...,n}. Alors les v.a. $X_{\pm} := (X_{i_1}, \dots, X_{i_e})$ et $X_{\uparrow} := (X_{j_1}, \dots, X_{j_k})$ sont indép. Proposition 3.20 (Indép par transformation) $X: \Omega \rightarrow E$, $Y: \Omega \rightarrow F$ deux v.a. indép $f: E \rightarrow H$ $g: F \rightarrow K$ des fonctions (arbitraires) Alors les v.a. f(x) et g(y) sont aussi indép. Preme: $\forall A \subset H, B \subset K$, $P(f(x) \in A, g(Y) \in B) = P(X \in f^{-1}(A), Y \in g^{-1}(B))$ $= \mathbb{P}(X \in f^{-1}(A)) \, \mathbb{P}(Y \in g^{-1}(B))$ $f^{-1}(A) = \{x \in E : f(x) \in A\}$ per l'indép entre X et Y f^{-1} n'est pas la fonction inverse! = $\mathbb{P}(f(x) \in A) \mathbb{P}(g(y) \in B)$ Donc f(x) et g(x) sont indép. Notation: XILY signifie que X et Y sont îndép. Corollaire: Soient X1, ..., Xn, Xn+1, ..., Xn+m des v.a. réelles indép, avec n, m≥1. Alors $(X_1 + \cdots + X_n) \perp (X_{n+1} + \cdots + X_{n+m})$

Preuwe:
$$X_{I} := (X_{1}, \dots, X_{n})$$
 $X_{J} := (X_{n+1}, \dots, X_{n+m})$

Par l'indep par paquets, $X_{I} \perp X_{J}$
 $\forall k \ge 1$, $f_{k} : \mathbb{R}^{k} \to \mathbb{R}$ fonction somme

 $f_{k}(x_{1}, \dots, x_{k}) = x_{n} + \dots + x_{k}$

Alors $X_{1} + \dots + X_{n} = f_{n}(X_{J})$
 $X_{n+1} + \dots + X_{n+m} = f_{m}(X_{J})$

Par l'indép par transformation, $f_{n}(X_{J}) \perp f_{m}(X_{J}) \perp S$
 $\underbrace{3.3}_{1} = \underbrace{\text{Exemples de v.a. discrètes}}_{X: \Omega \to E, |E| < \infty}$
 $\underbrace{X: \Omega \to E, |E| < \infty}_{X: \Omega \to E, |E| < \infty}$
 $\underbrace{X: \Omega \to E, |E| < \infty}_{X: \Omega \to E, |E| < \infty}$
 $\underbrace{X: \Omega \to E, |E| < \infty}_{X: \Omega \to E, |E| < \infty}$
 $\underbrace{X: \Omega \to E, |E| < \infty}_{X: \Omega \to E, |E| < \infty}$
 $\underbrace{X: \Omega \to E, |E| < \infty}_{X: \Omega \to E, |E| }$
 $\underbrace{X: \Omega \to E, |E| }_{X: \Omega \to E}$
 $\underbrace{X: \Omega \to E, |E|}_{X: \Omega \to$

3) Loi binomiale n = 1, p \(\bullet_0, 1 \end{aligned}. X suit une loi binomiale de paramètre n et p ($X \sim Bin(n,p)$) Si $X(\Omega) = \{0,1,...,n\}$ et $P_{\times}(k) = \binom{n}{k} p^k (1-p)^{n-k} \quad \forall k \in \{0, 1, \dots, n\}$ Prop (voir Exemple 2.32)
Soient X1, ..., Xn des v.a. Bern(p) indép, Alors.
X1+...+Xn suit la loi Bin(n.p) compte le nb. de suciès parmi N épreures indép. de proba de suciès p. Bin(1,p) = Bern(p)Exercice 3.22 Soient X~Binln,p) et Y~Binlm,p) des va. indép Montrer que X+Y~ Bin(n+m,p) Lemme: Si $X: \Omega \rightarrow E$ sont deux v.a. de même loi, $Y: \Omega' \rightarrow E$ alors of fonction f: E-> F, $f(x): \Omega \to F$ et $f(y): \Omega' \to F$ ont la même loi. Solution de l'exercice 3.22: Soient (Xi)_{1≤i≤n+m} des va Bern(p) indép Considérons $X' = \sum_{i=1}^{n} x_i$ et $Y' = \sum_{i=n+1}^{n} x_i$ Alors (X', Y') a la même loi que (X,Y) (pourquoi?)

Donc
$$X+Y$$
 a même loi que $X'+Y'$
 $X'+Y'=\sum_{i=1}^{n+m}X_i\sim Bin(n+m,p)$

4) Loi de Poisson

λ ∈]0,∞[

X suit une loi de Poisson de paramètre λ $(X \sim Poi(\lambda))$ si X est à valeurs dans iN et $P_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $\forall k \geq 0$

Une binomiale avec beaucoup de tentatives mais proba de suciès faible « Poisson.

Frop Soit (Pn) nz, une suite de réels dans Jo, 1[On suppose que $p_n \sim \frac{\lambda}{n}$ quand $n \to \infty$ où $\lambda > 0$

> Alors si Xn~Bin(n,pn), on a pour tout k=0, $\lim_{n\to\infty} \mathbb{P}(X_n = k) = \mathbb{P}(X = k)$ où $X \sim Poi(A)$. $= e^{-A} \frac{\lambda^k}{k!}$

Prop X~Poi(A), Y~Poi(M) Si XII Y alors X+ Y~Poi(x+M)

5) Loi géométrique

10,1[

X suit la loi géométrique de paramètre p (X~Géom(p))

si
$$X(\Omega) = N^*$$
 et $P_X(k) = p(1-p)^{k-1}$ $\forall k \ge 1$.

Succès $k-1$ échecs

X représente l'instant du premier succès lors de tentatives indép de proba de succès p.

Variant de la loi géométrique:
$$y \sim Géom_o(p)$$

 $f_y(k) = p(1-p)^k \quad \forall k \ge 0$

Prop Absence de mémoire
$$X \sim G\acute{e}om(p)$$
 Alors $\forall n, m \geq 0$ $P(X > n+m \mid X > n) = P(X > m)$

Exercice 3.26 Soit X une v.a. à valeurs dans
$$\mathbb{N}^*$$
 tel que $\mathbb{P}(X > n + m \mid X > n) = \mathbb{P}(X > m) \quad \forall n, m \ge 0$

Montrer que
$$X \sim Géom(p)$$
 avec $p = P(X=1)$

Rappel:
$$X \sim Poi(\lambda)$$
 $\lambda \in]0, +\infty[$ $X(\Omega) = N$ $\forall k \ge 0$ $P_X(k) = P(X = k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$

Preuve:
$$\forall n \geq 0$$
 $\{x+y=n\} = \prod_{k=0}^{n} \{x=k, y=n-k\}$

$$P(X+Y=n) = \sum_{k=0}^{n} P(X=k, Y=n-k) \quad \text{additivite de } P$$

$$= \sum_{k=0}^{n} P(X=k) P(Y=n-k) \quad X \perp LY$$

$$= \sum_{k=0}^{n} e^{-\lambda} \frac{\lambda^{k}}{k!} e^{-\mu} \frac{\mu^{n-k}}{(n-k)!} \quad X \sim Poi(\lambda)$$

$$= e^{-(\lambda+\mu)} \frac{1}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda^{k} \mu^{n-k}$$

$$= e^{-(\lambda+\mu)} \frac{1}{n!} (\lambda+\mu)^{n}$$

Ainsi $X+Y\sim Poi(1+\mu)$. \square "Binomiale avec beaucoup de tentative mais proba de succès faible" \approx Poisson

Prop Soit $(X_n)_{n\geq 1}$ une suite de v.a. t.g. $X_n \sim B_{in}(n,p_n)$ où $p_n \sim \frac{\lambda}{n}$ quand $n \to \infty$, $\lambda \in]0,\infty[$

Alors $\forall k \ge 0$ $\lim_{n \to \infty} \mathbb{P}(X_n = k) = e^{-\lambda} \frac{\lambda^k}{k!}$

Prewe (Cas $p_n = \frac{\lambda}{n}$) $k \ge 0 \quad \text{fixe}, \quad n \ge k \qquad (P(X_n = k) = 0 \text{ si } k > n)$ $P(X_n = k) = \binom{n}{k} p_n^k (1 - p_n)^{n-k}$

$$= \frac{n!}{k! (n-k)!} \frac{\lambda^k}{n^k} \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^k}{k!} \frac{n(n-1)\cdots(n-k+1)}{n^k} \frac{1}{\left(1 - \frac{\lambda}{n}\right)^k} \left(1 - \frac{\lambda}{n}\right)^n$$

$$k \text{ étant } \text{ fixe } : \text{ fim } \frac{n(n-1)\cdots(n-k+1)}{n^k} = 1$$

$$\lim_{n\to\infty} \left(1-\frac{\lambda}{n}\right)^k = 1$$

$$\lim_{n\to\infty} \left(1-\frac{\lambda}{n}\right)^n = e^{-\lambda}$$

$$\lim_{n\to\infty} \left(1-\frac{\lambda}{n}\right)^n = \lim_{n\to\infty} e^{n\ln(1+\frac{\lambda}{n})} = e^{\times}$$

$$\text{Analyse } : \forall x \in \mathbb{R}, \text{ fim } \left(1+\frac{x}{n}\right)^n = \lim_{n\to\infty} e^{n\ln(1+\frac{\lambda}{n})} = e^{\times}$$

$$\text{Donc } \lim_{n\to\infty} \mathbb{P}\left(X_n = k\right) = \frac{\lambda^k}{k!} \cdot 1 \cdot \frac{1}{1} \cdot e^{-\lambda} = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$$

$$\text{Exercice traiter le cas général } n_{Pn} \xrightarrow{n\to\infty} \lambda.$$

$$\text{Rappel } \left(X \sim \text{Géom}(p), p \in J_0, 1\right]$$

$$X(\Omega) = N^*$$

$$\forall k \ge 1, \mathbb{P}\left(X = k\right) = f_X(k) = (1-p)^{k-1}, p$$

$$\text{l'instant du premier succès d'abord } k \cdot 1 \text{ exhecs } k^{\ell} \text{ tentative} = \text{succès}$$

$$\text{Exemple : Lancers Successifs de dés (à 6 faces)}$$

$$X = \text{numéro du lancer qui donne 3 pour la 1 ère fois alors } \times \infty \text{ Géom } \left(\frac{1}{6}\right)$$

$$Y = \text{numéro du lancer qui donne 3 on 4 pour la 1 ère fois alors } \times \infty \text{ Géom } \left(\frac{2}{6}\right) \qquad \text{(Voir l'Exercice 4.11 en TD)}$$

$$\text{Variation : } Z \sim \text{Géomolp} \Rightarrow \forall k \ge 0 \text{ } \mathbb{P}(Z = k) = (1-p)^k \text{ } p$$

$$\left(Z(\Omega) = N\right)$$

Absence de mémoire $\forall n,m \ge 0$ $\mathbb{P}(X>n+m|X>n) = \mathbb{P}(X>m)$ $\frac{\text{Prewe}}{\mathbb{P}(X>n+m|X>n)} = \frac{\mathbb{P}(X>n+m,X>n)}{\mathbb{P}(X>n)} = \frac{\mathbb{P}(X>n+m)}{\mathbb{P}(X>n)}$ $\forall n \ge 0, \ \mathbb{P}(x > n) = \sum_{k=0}^{\infty} \mathbb{P}(x = k)$ $= \sum_{k=n+1}^{\infty} p(1-p)^{k-1}$ $= (1-p)^n \sum_{\ell=0}^{\infty} p(1-p)^{\ell} = (1-p)^n$ (voir l'Exercice 4.4 en TD) Donc $P(X>n+m|X>n) = \frac{(1-p)^{n+m}}{(1-p)^n} = (1-p)^m$ $= \mathbb{P}(\times > m)$ Exercice: Soit Y une v.a. à valeurs dans \mathbb{N}^* t.q $\forall \mathsf{n}, \mathsf{m} \ge 0 \quad \mathbb{P}(\times > \mathsf{n} + \mathsf{m} \mid \times > \mathsf{n}) = \mathbb{P}(\times > \mathsf{m})$ Montrer que $Y \sim G\acute{e}om(p)$ avec $p = \mathbb{P}(Y = 1)$ Preuve La propriété d'absence de mémoire implique que $\forall n, m \ge 0$ $\mathbb{P}(Y > n + m) = \mathbb{P}(Y > n) \mathbb{P}(Y > m)$ En prenant $m=1: \mathbb{P}(y>n+1) = \mathbb{P}(y>n) \mathbb{P}(y>1)$ Alors $\forall n \ge 1$, $\mathbb{P}(y > n) = \mathbb{P}(y > 1)^n = p^n$ et donc Y~Géom(p). $\mathbb{C}P(Y=n) = P(Y>n-1) - P(Y>n)$ $car \{Y=n\} = \{Y>n-1\} \setminus \{Y>n\}$

§ 3.4 Espérance, variance et moments § 3.4.1 Définition de l'espérance L'espérance d'une v.a. discrète réelle est la moyenne pondérée des valeurs xi, que peut prendre X, pondérées par les poids $p_i = P(X = x_i)$ Interprétation fréquentiste: on répète N>>1 fois une expérience aléatoire X1, ···, XN les valeurs de la v.a. X $N_{\varkappa} = nb$, de fois où X_i vaut $\varkappa \in \mathbb{R}$ $\frac{1}{N}\left(X_1+\cdots+X_N\right) = \frac{1}{N}\sum_{\mathbf{x}\in\mathbf{X}(\Omega)}\mathbf{x}N_{\mathbf{x}} = \sum_{\mathbf{x}\in\mathbf{X}(\Omega)}\mathbf{x}\frac{N_{\mathbf{x}}}{N}$ $\approx \sum_{\mathbf{x} \in \mathbf{X}(A)} \mathbf{x} \, \mathbb{P}(\mathbf{X} = \mathbf{x})$ Notation: $x \in \mathbb{R}$ $x^{+} = \max\{x, 0\}$ partie positive de x $0 \le x^- = \max\{-x, 0\}$ partie négative de x $x^+-x^-=x$ et $x^++x^-=|x|$ Définition de l'espérance X v.a. discrète réelle, $X(\Omega)$ dénombrable, densité discrète P_X On dit que X admet une espérance si $\sum_{x \in X(\Omega)} x P_X(x)$ est bien définie C-à-d. Si $\sum_{x \in X(\Omega)} x^+ p_x(x) < +\infty$ ou $\sum_{x \in X(\Omega)} x^- p_x(x) < +\infty$ Si X admet une espérance, on définit l'espérance de X $\mathbb{E}(X)'' = \mathbb{E}[X]'' = \sum_{\mathbf{x} \in X(\Omega)} \mathbf{x} \, P_{\mathbf{x}}(\mathbf{x}) = \sum_{\mathbf{x} \in X(\Omega)} \mathbf{x} \, P_{\mathbf{x}}(\mathbf{x}) \in [-\infty, +\infty]$ $\mathbb{E}(X) \text{ pas toujours définie à cause du problème "} \infty - \infty''$

Remarque 1: Si X ne prend qu'un nb. fini de valeurs, alors X admet une espérance finie. Remarque 2: Toute v.a. positive X admet une espérance $E(X) \in [0, +\infty]$ qui peut éventuellement valoir $+\infty$ Remarque 3: Pour toute v.a. véelle X, on considère les v.a. positives $X^{\dagger} = \max\{X, 0\} \ge 0$ $X^- = \max\{-x, o\} \ge 0$ $|X| = X^{+} + X^{-} \ge 0$ $\mathbb{E}(X^+)$, $\mathbb{E}(X^-)$ et $\mathbb{E}(|X|)$ toujours bien définies $\mathbb{E}(X^{+}) = \sum_{\mathbf{x} \in X(\mathbf{a})} \mathbf{x} \, \mathbb{P}(X^{+} = \mathbf{x}) = \sum_{\mathbf{x} \in \mathbb{R}} \mathbf{x} \, \mathbb{P}(X^{+} = \mathbf{x})$ $= \sum_{x} x^{+} \mathbb{P}(X = x) = \sum_{x} x^{+} p_{X}(x)$ de même $\mathbb{E}(x^{-}) = \sum_{x} x^{-} p_{x}(x)$

$$\mathbb{E}(|X|) = \sum_{x} |x| p_{X}(x)$$

• X admet une espérance (\Longrightarrow) au moins l'une des deux espérances $\mathbb{E}(X^+)$, $\mathbb{E}(X^-)$ est finie Alors $\mathbb{E}(X) = \mathbb{E}(X^+) - \mathbb{E}(X^-)$

$$cov \sum_{\mathbf{x}} \mathbf{x} p_{\mathbf{x}}(\mathbf{x}) = \sum_{\mathbf{x}} \mathbf{x}^{+} p_{\mathbf{x}}(\mathbf{x}) - \sum_{\mathbf{x}} \mathbf{x}^{-} p_{\mathbf{x}}(\mathbf{x})$$

• X admet une espérance finie $\iff \mathbb{E}(X^+)$ et $\mathbb{E}(X^-)$ sont finies $\iff \mathbb{E}(|X|) = \mathbb{E}(X^+) + \mathbb{E}(X^-) < +\infty$ $\iff \sum_{x} P_x(x)$ est absolument convergente \mathbb{C} -à-d. $\sum_{|x|} P_x(x) < +\infty$.

Exemple 1 Soit X v.a. véelle prosque sûrement constante
$$\exists c \in \mathbb{R}$$
 $p_{x}(c) = 1$ et $p_{x}(x) = 0$ si $x \neq c$ $\mathbb{E}(x) = c \cdot p_{x}(c) = c$

Exemple 2 Soit X v.a. de Bernoulli de paramètre p $\mathbb{E}(X) = 0 \times \mathbb{P}(X=0) + 1 \times \mathbb{P}(X=1) = p$

En particulier, si
$$X = 1_A$$
, $A \in \mathcal{F}$
 $\mathcal{P}_X(1) = \mathbb{P}(A)$ et $\mathcal{P}_X(0) = 1 - \mathbb{P}(A)$
 $\mathbb{E}(X) = \mathbb{P}(A)$

Exemple 3
$$X = nb$$
. obtenu en langant un dé à 6 faces $P_X(x) = \frac{1}{6} \quad \forall x \in \{1, 2, \dots, 6\} = X(\Omega)$

$$E(X) = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{7}{2}$$

$$E(X) \notin X(\Omega)$$

En général, E(X) n'est pas la valeur la plus probable de X ni une valeur que l'on s'attend à observer.

 $\frac{$3.4.2$ Propriétés de l'espérance}{$Prop}$ Soit X une va admettant une espérance. On a $|\mathbb{E}(\mathsf{X})| \leq \mathbb{E}(|\mathsf{X}|)$. En particulier, Si $\mathbb{E}(|X|) < +\infty$, alors $\mathbb{E}(X)$ est finie

Viewe: $|\mathbb{E}(X)| = |\sum_{x} \mathcal{P}_{x}(x)| \leq \sum_{x} |\mathcal{P}_{x}(x)| = \mathbb{E}(|X|)$

Proposition 3.35 [Vidéo sur Moodle] Soit X une v.a. discrète à valeurs dans X(N)CE Soit $g: E \rightarrow \mathbb{R}$ une fonction La v.a. g(x) admet une espérance si et seulement si Σ g(x) P_X(x) est bien définie. Dans ce cas, xEX(Ω) $\mathbb{E}(g(x)) = \sum_{x \in X(\Omega)} g(x) P_X(x) \in [-\infty, +\infty]$ Formule de transfort Remarque: Cette formule s'applique toujours à $g(x)^+$, $g(x)^-$, |g(x)| g(x) admet une espérance finie $\Leftrightarrow \sum_{x \in X(\Omega)} |g(x)| p_x(x) < +\infty$ Proposition 3.36. Soit $X: (\Omega, F, P) \to \mathbb{R}$ v.a. discrète avec Ω dénombrable Alors X admet une espérance si et seulement si la somme $\sum_{w \in O} X(w) \mathbb{P}(\{w\})$ est définie. Si c'est le cas, on a $\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\})$ (formule alternative de l'espérance) <u>Preuve</u> v.a. discrètes identité $\gamma: \Omega \to \Omega$ $\omega \mapsto \omega$ (vue comme une fonction) $X: \Omega \rightarrow \mathbb{R}$ $\omega \mapsto X(\omega)$ $X(Y)(\omega) = (X \circ Y)(\omega) = X(Y(\omega)) = X(\omega), \forall \omega \in \Omega$ $\Rightarrow \mathbb{E}(X(Y)) = \mathbb{E}(X)$

$$Or \ \mathbb{E}(X(Y)) = \sum_{y \in Y(\Omega)} X(y) \ P_{Y}(y) \qquad (formule de transfert)$$

$$= \sum_{y \in Y(\Omega)} X(y) \ P_{Y}(y) \qquad (\forall \omega, Y(\omega) = \omega)$$

$$\exists \ Y \in Y(\Omega) \qquad \exists \ Y \in X(\omega) \ P_{Y}(\omega) \qquad \exists \ Y \in Y(\Omega) \qquad \exists \ Y \in X(\omega) \ P_{Y}(\omega) \ P_{Y}(\omega) \qquad \exists \ Y \in X(\omega) \ P_{Y}(\omega) \ P_{Y}(\omega) \qquad \exists \ Y \in X(\omega) \ P_{X}(\omega) \ P$$

Prop (Monotonie de l'espérance) $X: (\Omega, F, P) \rightarrow \mathbb{R}$, $Y: (\Omega, F, P) \rightarrow \mathbb{R}$ v.a. $S; \forall \omega \in \Omega, X(\omega) \leq Y(\omega), alons$ $E(x) \leq E(y)$ "Preme" $Y - X \ge 0$ v.a. positive par linéarité $\mathbb{E}(Y-X)+\mathbb{E}(X)=\mathbb{E}(Y)$ Comme $\mathbb{E}(Y-X) \ge 0$, on a $\mathbb{E}(X) \le \mathbb{E}(Y)$. Application de monotonie: Si X bornée c-à-d. FM<+00 t.g. |X(w)| \le M pour tout west alors $|E(x)| \leq E(|x|) \leq M$. En particulier, X admet une espérance finie Applications de linéanté:

1) X ~ Bin (n.p) $X = X_1 + \cdots + X_n$ où $X_i \sim \text{Bern}(p)$ $1 \leq i \leq n$.

sont indépendantes $\mathbb{E}(X) = \mathbb{E}(X_1) + \dots + \mathbb{E}(X_n) = np$ (sans utiliser l'indép) 2) A_1, \dots, A_n événements (pas necessairement îndép) $X = 1_{A_1} + \cdots + 1_{A_n} = nb. des Ai vérifiés loi de <math>x$ peut être très compliquée $E(X) = E(1_{A_1}) + \dots + E(1_{A_n}) = P(A_1) + \dots + P(A_n)$ application au paradoxe des anniversaires (Exemple 3.39 [vidéo en Moodle])

3) une nouvelle preuve de la formule d'inclusion-exclusion voir Exemple 3.38, page 37 du polycopié

Prop: Soit X: $(\Omega, F, P) \rightarrow \mathbb{R}^+$ v.a. positive Si $\mathbb{E}(X) = 0$, alors X est presque sûrement égale à 0c-à-d. $\mathbb{P}(X=0) = 1$

Prewe: $\mathbb{E}(X) = \sum_{x \in X(\Omega)} x P_X(x), \quad X(\Omega) \subset \mathbb{R}^+$

Une somme de termes positifs vaut O

(=> tous les termes sont nuls

Donc $\forall x \in X(\Omega), x > 0$ on a $\forall x (x) = 0$ $P(X > 0) = \sum_{\substack{x \in X(\Omega) \\ x > 0}} z \, P_X(x) = 0$

Ainsi $P(X=0) = P(X \ge 0) - P(X > 0) = 1 - 0 = 1$

Linéarité "infinie"

Prop (Admise) Soit (Xi)iz1 une suite de v.a. positives définies sur le même espace (si, F, IP).

Xi est une v.a. bien définie (qui peut valoir tos)

i=1

Alous $\mathbb{E}(\sum_{i=1}^{\infty} x_i) = \sum_{i=1}^{\infty} \mathbb{E}(x_i)$

(à voir en L3, conséquence du théorème de convergence monotone)

§ 3.4.3 Moments, variance et covariance

Définition (Moments)

Soit k≥1. On dit que X admet un moment d'ordre k fini Si $\mathbb{E}(|X|^k) < +\infty$. Si c'est le cas, $\mathbb{E}(X^k)$ est finie, et appelée moment d'ordre k de X

Définition (Variance et Covariance) $X: (\Lambda, F, P) \to \mathbb{R}, \quad Y: (\Lambda, F, P) \to \mathbb{R} \quad v.a.$

· Si X admet un moment d'ordre 2 fini, on appelle variance de X

$$Var(X) := \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 \ge 0$$

La racine carrée $\nabla_{\mathsf{X}} := \sqrt{\mathsf{Var}(\mathsf{X})}$ s'appelle l'écart type de X Tx quantifie

"l'écart de
$$\times$$
 à son espévance $\mathbb{E}(\mathsf{X})$ "
\ ou "la dispersion des valeurs de \times autour de $\mathbb{E}(\mathsf{X})$ "/

· Si X, Y et XY admettent une espérance finie, on appelle covariance de X et Y

$$Cov(X,Y) := \mathbb{E}((X-\mathbb{E}(X))(Y-\mathbb{E}(Y))$$

$$= \mathbb{E}(XY) - \mathbb{E}(X) \mathbb{E}(Y)$$

Remarque
$$Var(X) = Cov(X, X)$$

– Fin SÉANCE 6

<u>Kappel</u>: X va. réelle discrète Espérance $\mathbb{E}(X) := \sum_{x \in X(\Omega)} x \, P_X(x)$ si bien définie (ne dépend que de) $= \sum_{x \in X(\Omega)} x + p_X(x) - \sum_{x \in X(\Omega)} x - p_X(x) = \sum_{x \in X(\Omega)} x + p_X(x) - \sum_{x \in X(\Omega)} x + p_X(x) = \sum_{x \in$ Formule de transfert g fonction à valeurs véelles $\mathbb{E}\left(g(x)\right) = \sum_{x \in X(n)} g(x) \mathcal{P}_{X}(x)$ · Monotonie de l'espérance · Linéarité de l'espérance • $|\mathbb{E}(X)| \le \mathbb{E}(|X|')$ Pour une v.a. positive X, $\mathbb{E}(X) = 0 \Rightarrow X$ eot presque sûrement égale à 0§ 3.43 Moments, Variance et Covariance X admet un moment dondre k=1 fini si E(X) < +0 Dans ce cas, $\mathbb{E}(X^k) \in \mathbb{R}$ s'appelle moment d'ordre k de XProp (1) Si X et Y sont v.a. admettant un moment d'ordre k fini. alors X+Y admet aussi un moment d'ordre k fini (2) Si X admet un moment d'ordre k fini, alors X admet un moment d'ordre j fini pour tout 1 < j < k Preuve (1) $\forall x, y \in \mathbb{R}$, $|x+y| \leq 2 \max\{|x|, |y|\}$ $|x+y|^k \le 2^k \max\{|x|^k, |y|^k\} \le 2^k |x|^k + 2^k |y|^k$ $\Rightarrow \forall \omega \in \Omega, |X(\omega) + Y(\omega)|^k \leq 2^k |X(\omega)|^k + 2^k |Y(\omega)|^k$ $\text{notice} |X + Y|^k \leq 2^k |X|^k + 2^k |Y|^k$ Monotonie + Linéarité de l'espérance

 $\mathbb{E}(|X+Y|^k) \leq 2^k \mathbb{E}(|X|^k) + 2^k \mathbb{E}(|Y|^k) < +\infty$

(2)
$$\forall 1 \leq j \leq k, x \in \mathbb{R}$$
 $|x|^{j} \leq \begin{cases} 1 & \text{si } |x| \leq 1 \\ |x|^{k} & \text{si } |x| > 1 \end{cases}$

$$\Rightarrow |x|^{j} \leq 1 + |x|^{k} \text{ pour tout } x \in \mathbb{R}$$

$$\Rightarrow |x|^{j} \leq 1 + |x|^{k} \text{ pour tout } x \in \mathbb{R}$$

$$\times \text{ v.a.} \quad |x|^{j} \leq 1 + |x|^{k}$$

$$\Rightarrow \mathbb{E}(|\mathbf{x}|^{\frac{1}{2}}) \leqslant 1 + \mathbb{E}(|\mathbf{x}|^{k}) < +\infty \qquad \Box$$

Remarque Il est presible que
$$\mathbb{E}(X^{k+1}) = +\infty$$
 mais $\mathbb{E}(X^k) < +\infty$
exemple: X à valeurs dans \mathbb{N}^*
 $\forall N \ge 1$, $\mathbb{P}(X = n) = \mathcal{P}_X(n) = C \cdot n^{-(k+2)}$

où c'est la constante telle que
$$\sum_{n\geq 1} p_{x}(n) = 1$$

 $\mathbb{E}(x^{k}) = \sum_{n\geq 1} n^{k} p_{x}(n) = \sum_{n\geq 1} \frac{c}{n^{2}} < +\infty$

$$\mathbb{E}(X^{k+1}) = \sum_{n \geq 1} n^{k+1} P_X(n) = \sum_{n \geq 1} \frac{c}{n} = +\infty$$

Définition
$$X: (\Omega, F, P) \rightarrow \mathbb{R}, Y: (\Omega, F, P) \rightarrow \mathbb{R}$$
 v.a.

- Si X admet un moment d'ordre 2 fini,
- Variance de $X : Var(X) := \mathbb{E}((X \mathbb{E}(X))^2) \ge 0$ Écort-type de $X : \nabla X := \sqrt{Var(X)} \ge 0$
- Si \times , \forall et \times \forall admettent une espérance finie Covariance de \times et \forall : $Cov(\times, \forall) := \mathbb{E}((\times - \mathbb{E}(\times))(Y - \mathbb{E}(Y))) \in \mathbb{R}$

$$Cov(X,X) = Var(X)$$

 ∇_{X} quantifie "l'écart de X à son espérance $\mathsf{E}(\mathsf{X})$ "
ou "la dispersion des valeurs de X autour de $\mathsf{E}(\mathsf{X})$ "

Lemme (1)
$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

(2) $Cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$

Preuve (1) On note $\mu = \mathbb{E}(X) \in \mathbb{R}$
 $(X-\mu)^2 = X^2 - 2\mu X + \mu^2$
 $\mathbb{E}((X-\mu)^2) = \mathbb{E}(X^2) - 2\mu \mathbb{E}(X) + \mu^2$ for linearite

 $= \mathbb{E}(X^2) - 2\mu^2 + \mu^2 = \mathbb{E}(X^2) - \mu^2$

(2) On note $\mu_X = \mathbb{E}(X)$ et $\mu_Y = \mathbb{E}(Y)$
 $\mathbb{E}((X-\mu_X)(Y-\mu_Y)) = \mathbb{E}(XY-\mu_XY-\mu_YX+\mu_X\mu_Y)$
 $= \mathbb{E}(XY) - \mu_X\mathbb{E}(Y) - \mu_Y\mathbb{E}(X) + \mu_X\mu_Y$
 $= \mathbb{E}(XY) - \mu_X\mu_Y - \mu_Y\mu_X + \mu_X\mu_Y$
 $= \mathbb{E}(XY) - \mu_X\mu_Y - \mu_X\mu_Y + \mu_X\mu_Y$

De plus, $Si \times ou \times est$ presque sûrement constante, on a Cov(X,Y) = 0

 $\frac{\text{Prewe}}{\bullet} \quad \text{Symétrique}: \quad \text{par définition}$ $\quad \bullet \quad \text{bilinéaire}: \quad \text{Cov}(\alpha X + bY, Z) = \mathbb{E}((\alpha X + bY)Z) - (\alpha \mathbb{E}(X) + b\mathbb{E}(Y))\mathbb{E}(Z)$ $= \alpha \mathbb{E}(XZ) + b \mathbb{E}(YZ) - \alpha \mathbb{E}(X) \mathbb{E}(Z) - b \mathbb{E}(Y) \mathbb{E}(Z)$ $=\alpha(\mathbb{E}(XZ)-\mathbb{E}(X)\mathbb{E}(Z))+b(\mathbb{E}(YZ)-\mathbb{E}(Y)\mathbb{E}(Z))$ = a Cov(X,Z) + b Cov(Y,Z)• Si X est presque sûrement égale à $c \in \mathbb{R}$, alors $\mathbb{E}(x) = c$ et $x - \mathbb{E}(x)$ est presque sûrement égale à o \Rightarrow (X-E(X))(Y-E(Y)) est presque sûrement égale à O $\Rightarrow \mathbb{E}((X-\mathbb{E}(X))(Y-\mathbb{E}(Y)) = Cov(X,Y) = 0$ Prop Soit X une v.a. admettant un moment d'ordre 2 fini, alors (1) $Var(aX+b) = a^2 Var(X)$, $\forall a,b \in \mathbb{R}$ (2) $Var(X) = 0 \iff X$ est presque sûrement constante (3) $Var(X) \leq \mathbb{E}((X-c)^2)$ pour tout $c \in \mathbb{R}$, avec Egalité Si et seulement si $C = \mathbb{E}(X)$ (Ex5.2 en TD) (4) Si X1,..., Xn Sont des V.a. admettant un moment d'ordre 2 fini, alors $Var\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} Var(X_{i}) + \sum_{1 \leq i,j \leq n} Cov(X_{i}, X_{j})$ $i \neq j$

 $= \sum_{i=1}^{n} Var(Xi) + 2 \sum_{1 \le i \le j \le n} Cov(Xi, Xj)$ $\underline{Prewe} \quad (1) \quad Var(aX+b) = Cov(aX+b, aX+b) = a^{2} Cov(X, X) = a^{2} Var(X)$ proposition precedente

(2)
$$X$$
 est $p.s.$ (presque sûrement) constante \Rightarrow $Var(X) = Cov(X,X) = O$

Réciproquement, si $Var(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = O$, alors

$$(X - \mathbb{E}(X))^2 \text{ est } p.s. \text{ égale } \tilde{a} O$$

$$\Leftrightarrow X - \mathbb{E}(X) \text{ est } p.s. \text{ égale } \tilde{a} O$$

$$\Leftrightarrow X \text{ est } p.s. \text{ égale } \tilde{a} \mathbb{E}(X)$$
(3) $\forall c \in \mathbb{R}$, $0 \le Var(X) = Var(X - c) = \mathbb{E}((X - c)^2) - (\mathbb{E}(X - c))^2$

$$donc \quad Var(X) = \mathbb{E}((X - c)^2) \iff \mathbb{E}(X - c) = O$$

$$\Leftrightarrow c = \mathbb{E}(X)$$
(4) $Var(\sum_{i=1}^{n} Xi) = Cov(\sum_{i=1}^{n} Xi, \sum_{i=1}^{n} Xi)$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} Cov(Xi, Xj) \quad (bilinéarité)$$

$$\begin{array}{ll}
\vec{c} = i \quad \vec{j} = i \\
 &= \sum_{1 \leq i,j \leq n} Cov(X_i, X_j) \\
 &= \sum_{1 \leq i,j \leq n} Cov(X_i, X_i) + \sum_{1 \leq i,j \leq n} Cov(X_i, X_j) \\
 &= \sum_{i = j} Cov(X_i, X_i) + \sum_{i = j} Cov(X_i, X_j)
\end{array}$$

$$= \sum_{i=1}^{n} Var(X_i) + \sum_{1 \leq i,j \leq n} Cov(X_i,X_j)$$

$$= \sum_{i=1}^{n} Var(X_i) + 2 \sum_{1 \leq i < j \leq n} Cov(X_i,X_j)$$

$$Car \sum_{1 \leq i < j \leq n} Cov(X_i,X_j) = \sum_{1 \leq j < i \leq n} Cov(X_i,X_j)$$

(Symetrie)

§ 3.4.4 Espérance et Indépendance

Proposition 3.46 [Vidéo sur Moodle]

Soient $X. \Omega \rightarrow \mathbb{R}$, $Y: \Omega \rightarrow \mathbb{R}$ v.a. indép.

• Si X et Y admettent toutes les deux une espérance finie, alors XY admet une espérance finie et $\mathbb{E}(XY) = \mathbb{E}(X) \mathbb{E}(Y)$ • Si X \geq 0 et Y \geq 0, alors $\mathbb{E}(XY) = \mathbb{E}(X) \mathbb{E}(Y)$ même sans l'hypothèse que $\mathbb{E}(X)$ et $\mathbb{E}(Y)$ soient finies.

Convention: $0 \times (+\infty) = 0$, $(+\infty) \times (+\infty) = (+\infty)$

" $\underline{\text{Prewe}}$ " E(XY) = E(g(X,Y)) $g:(x,y) \mapsto xy$ $= \sum_{\substack{\mathbf{x} \in \mathbf{X}(\mathfrak{D}) \\ \mathbf{y} \in \mathbf{Y}(\mathbf{D})}} g(\mathbf{x}, \mathbf{y}) \, P_{\mathbf{X}, \mathbf{y}}(\mathbf{x}, \mathbf{y}) \qquad \text{formule de transfert}$

 $= \sum_{\substack{x \in X(\Omega) \\ y \in Y(\Omega)}} xy \, P_{X}(x) \, P_{y}(y) \quad \text{indep}$

 $= \left(\sum_{\mathbf{x} \in \mathbf{X}(\Omega)} \mathbf{x} \, \mathcal{P}_{\mathbf{X}}(\mathbf{x})\right) \left(\sum_{\mathbf{y} \in \mathbf{Y}(\Omega)} \mathbf{y} \, \mathcal{P}_{\mathbf{y}}(\mathbf{y})\right)$ $= \mathbb{E}(\mathbf{X}) \, \mathbb{E}(\mathbf{y})$

Corollaire 1 Soient X, Y indép, admettant une espérance finie

Alors Cov(X,Y) = E(XY) - E(X) E(Y) = 0

Gov(x, y) = 0 \Rightarrow X IL y exemple: Ex 5.3 en TD

Corollaire 2 Si X_1, \dots, X_n sont indép, admettant un moment d'ordre 2 fini alors $Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i)$ car $Cov(X_i, X_j) = 0$ pour tous $i \neq j$

Théorème (Inégalité de Bienaymé-Tchebycheu)

$$X: (\Omega, F, P) \rightarrow \mathbb{R}$$
 v.a. admettant un moment d'ordre 2 fini Abors $\forall E > 0$, $P(|X - E(X)| \ge E) \le \frac{Var(X)}{E^2}$

Application $\nabla_{X} := \sqrt{Var(X)}$ écont-type

 $P(|X - E(X)| \ge C \cdot \nabla_{X}) \le \frac{Var(X)}{C^2 \nabla_{X}^2} = \frac{1}{C^2}$, $\forall C > 0$

densité de X

2 $C \nabla_{X}$

Typiquement, X s'écarte de son espérance $E(X)$ d'au plus une constante fois ∇_{X}

"Typiquement, X s'écarte de son espérance $E(X)$ d'au plus une constante fois ∇_{X}

$$\frac{\mathbb{E}\left(\left(X-\mathbb{E}(X)\right)^{2}\right)}{\mathbb{E}^{2}} = \frac{\text{Var}(X)}{\mathbb{E}^{2}}$$

$$\frac{\text{Théorème 3.52}\left(\text{Inégalité de Cauchy-Schwarz}\right)}{X, Y \text{ v.a. réelles ayant un moment d'ordre 2 fini}}$$
Alors XY admet une espérance finie et

$$|E(XY)| \leq E(X^2)^{\frac{1}{2}} \cdot E(Y^2)^{\frac{1}{2}} = \sqrt{E(X^2)E(Y^2)}$$

Prewe $\{|X - \mathbb{E}(X)| \ge \varepsilon\} = \{|X - \mathbb{E}(X)|^2 \ge \varepsilon^2\}$

 $\mathbb{P}(|X - \mathbb{E}(X)| \ge \varepsilon) = \mathbb{P}(|X - \mathbb{E}(X)|^2 \ge \varepsilon^2)$

Remarques (1) $\mathbb{E}(|XY|) \leq \mathbb{E}(X^2)^{\frac{1}{2}} \mathbb{E}(Y^2)^{\frac{1}{2}}$ (2) Lorque $\mathbb{E}(Y^2) > 0$ (c-à-d. Y n'est pas P.S. Egale \tilde{a} O), $|\mathbb{E}(XY)| = \mathbb{E}(X^2)^{\frac{1}{2}} \mathbb{E}(Y^2)^{\frac{1}{2}} \iff \exists \lambda \in \mathbb{R} \ t.g. \ X = \lambda Y \ P.S.$ $\mathbb{P}(X = \lambda Y) = 1$

Serie harmonique
$$\sum_{k=1}^{n} \frac{1}{k+1} < \ln(n+1)$$

$$\sum_{k=1}^{n} \frac{1}{k+1} \sim \ln(n) \quad \text{lorsque } n \to \infty$$

$$\mathbb{E}(X_n) \sim \ln(n) \quad \text{et} \quad \text{Var}(X_n) < \ln(n+1)$$

$$\text{Par Bienaymé} - \text{Tchebychev},$$

$$\mathbb{P}(|X_n - \mathbb{E}(X_n)| \ge 10 \sqrt{\ln(n+1)}) < \frac{\text{Var}(X_n)}{100 \ln(n+1)} < \frac{1}{100}$$

$$\text{Pour tout } n \text{ (fixé), il y a au moins } 99\% \text{ de chances que}$$

$$X_n \in \left[\mathbb{E}(X_n) - 10 \sqrt{\ln(n+1)}, \mathbb{E}(X_n) + 10 \sqrt{\ln(n+1)}\right]$$

$$\text{Pour grand } n, \quad \mathbb{E}(X_n) \sim \ln n \qquad n \to \infty:$$

$$\ln n \to \infty:$$

$$\ln n \to +\infty$$

$$\ln n \to +\infty$$

$$\text{In } \ln n \to +\infty$$

définie { dans \mathbb{R} au moins pour $z \in [-1,1]$ dans $[0,+\infty]$ pour tout $z \in [0,+\infty[$ Convention: $0^{\circ}=1$ $G_{\times}(0)=P_{\times}(0)$

Cette définition $G_X(3) = \sum_{n=0}^{+\infty} 3^n p_X(n)$ s'étend au cas $3 \in \mathbb{C}$ pour tout $|3| < \mathbb{R}$ où \mathbb{R} est le rayon de convergence de la série entière $\sum_{n=0}^{+\infty} p_X(n) 3^n$ Exemple $X \sim Poi(\lambda)$, $\lambda > 0$ $P_X(n) = \frac{\lambda^n}{n!} e^{-\lambda}$ $G_{X}(3) = \sum_{n \geq 0} 3^{n} \frac{\lambda^{n}}{n!} e^{-\lambda} = \left(\sum_{n \geq 0} \frac{(3\lambda)^{n}}{n!}\right) e^{-\lambda} = e^{3\lambda} e^{-\lambda}$ $=e^{\lambda(z-1)}$ pour tout $z\in C$ Théorème Deux v.a. à valeurs dans IN ayant la même fonction génératrice ont la même loi.

Preuve $\phi_{\times}(n)$, $n \ge 0$ sont les coefficients du développement de Taylor de G_{\times} en Ode G_X en 0. Px est déterminée par Gx grâce à l'unicité de la décomposition en série entière. Exemple (bis) Donc $G_X(3) = e^{\lambda(3-1)}$ implique que $X \sim Poi(\lambda)$. Théorème $X: (\Omega, F, P) \rightarrow N v.a.$

héorème $X: (\Omega, F, P) \rightarrow IN v.a.$ Sa fonction génératrice G_X est bien définie (au moins) sur [-1,1] et est infiniment dérivable (au moins) sur [-1,1].

De plus, la densité $p_X(k) = \frac{1}{k!} G_X^{(k)}(0)$ pour tout $k \in IN$ où $G_X^{(k)}$ est la k-ème dérivée, de G_X

où $G_X^{(k)}$ est la k-ème dérivée de G_X . (Donc la fonction génératrice caractérise la boi)

Preuve
$$\forall 3 \in [-1, 1]$$
, $| z^n P_X(n) | \leq P_X(n)$
 $\left| \sum_{n \geq 0} z^n P_X(n) \right| \leq \sum_{n \geq 0} | z^n P_X(n) | \leq \sum_{n \geq 0} P_X(n) = 1$

Catte série entière possède un rayon de convergence $R \geq 1$

Théorème de dérivation des séries entières implique

 G_X est \mathcal{C}^{∞} sur $J-R,RE$.

 $\forall k \geq 1$, $-1 \leq 3 \leq 1$,

 $G_X^{(k)}(z) = \sum_{n = k}^{\infty} n(n-1) \cdots (n-k+1) \cdot 3^{n-k} \cdot P_X(n)$
 $= \sum_{n = k}^{\infty} \frac{n!}{(n-k)!} \cdot 3^{n-k} \cdot P_X(n)$

En prenent $z = 0$, $G_X^{(k)}(0) = \frac{k!}{0!} \cdot 0^0 \cdot P_X(k) = k! \cdot P_X(k)$

Prop $S_i \times et Y$ sont des $u.a.$ indép \overline{a} valeurs dans IN

Alors $G_{X+Y}(z) = G_X(z) \cdot G_Y(z)$

pour tout $z \geq 0$ et pour tout $z \in R$ tq. $G_X(z)$ et $G_Y(z)$ soient finiès $P_X(z) = P_X(z) \cdot P_X(z) = P_X(z) \cdot P_X(z)$

• X admet un moment d'ordre k fini $\Leftrightarrow G_X$ est k fois dérivable à gauche en 1, c'est-à-dire $G_X^{(k)}(1^-) := \lim_{X \to \infty} G_X^{(k)}(x) < +\infty$.

Exercice 6.1 en TD: fonctions génératrices des lois classiques

Bern(p), Bin(n,p), Géom(p), Poi(λ)

Exercice 6.2 en TD: Appliquer Prop 3.61 pour calculer les moments de Géom(p) et Poi(x).

$$E(X) = G'_{X}(1)$$

$$E(X(X-1)) = G''_{X}(1)$$

$$Var(X) = E(X^{2}) - E(X)^{2} = E(X(X-1)) + E(X) - E(X)^{2}$$

$$= G''_{X}(1) + G'_{X}(1) - G'_{X}(1)^{2}$$

(à faire dans la semaine suivant le partiel)

Chapitre IV Variables aléatoires réelles générales

On veut tirer un nombre au hasard dans [0,1] (non dénombrable) Le nombre obtenu X à valeurs dans [0,1] n'est plus une v.a. discrète.

Déf On appelle v.a. réelle sur un espace probabilisé (Ω, F, \mathbb{P}) toute fontion $X: \Omega \to \mathbb{R}$ tq. pour tont intervalle $I \subset \mathbb{R}$ l'ensemble $\{\omega \in \Omega: X(\omega) \in I\}$ soit un événement de F $[X(\Omega)]$ n'est plus supposé dénombrable.]

Notation $\{X \in I\} = X^{-1}(I) = \{\omega : X(\omega) \in I\}$ $\{X \le t\} = \{\omega : X(\omega) \le t\}$

Lorsque X est une v.a. réelle, on peut parler de P(X∈I)

Remarque 1 X va. réelle \iff $Y t \in \mathbb{R}$, $\{X \le t\} \in \mathbb{F}$ (admise)

Idée: chaque intervalle I s'exprime à l'aide des demi-droite $]-\infty,t]$ avec des passages au complémentaire, union et/ou intersection dénombrable $]t,+\infty[=]-\infty,t]^c$

$$Jt,+\infty[=J-\infty,t]^{2}$$

$$J-\infty,t[=\bigcup_{S\in\Omega}J-\infty,S]$$

$$= \bigcup_{n \ge 1}]-\infty, S_n] \text{ on } S_n < S_{n+1} < t, \forall n \ge 1$$

$$\lim_{n \to \infty} \{S_n = t\}$$

$$[s,t] = [s,+\infty[\Lambda]-\infty,t]$$

Remarque 2 Déf: $X: \Omega \rightarrow \mathbb{R}^n$ est un vecteur aléatoire
Pour tout n-uplets d'intervalles I,, In
\Leftrightarrow Pour tout n-uplets d'intervalles I_1, \dots, I_n $\{x \in I_1 \times \dots \times I_n\} \in \mathcal{F}$
Remarque 3 Une v.a. discrète à valeurs dans R est une v.a. réelle
(l'inverse n'est pas vrai!)
Si $X(\Omega) \subset \mathbb{R}$ est dénombrable et $\forall x \in X(\Omega) \ \{x = x\} \in \mathcal{F}$,
alors $\{x \in I\} = \bigcup_{x \in X(\Omega) \cap I} \{x = x\} \in \mathcal{F}$
✓ union dénombrable
Remarque 4 Pour une v.a. réelle X , $\{X \in A\} \in \mathcal{F}$ est vraie pour une large classe d'ensembles $A \subset \mathbb{R}$, appelé ensemble borélien
classe d'ensembles ACR, appelé ensemble borélien
Un intervalle est un ensemble borélien
Déf (Tribu borélienne)
$\mathcal{B}(\mathbb{R}) = \{$ ensembles boréliens dans \mathbb{R}^3
:= la tribu engendrée par les intenalles de IR
= la plus petite tribu contenant les intervalles de R
Il existe une partie de R qui n'est pas un ensemble borêlien!
$B(R) \subseteq P(R)$
En conséquence, pour une fonction arbitraire $g: R \rightarrow R$,
g(X) n'est pas forcément une v.a. réelle.
Bonne nouvelle: pour toutes les fonctions g rencontrées dans
ce cours (et dans la vie courante), g(x) reste une v.a. véelle.
Bonne nouvelle: pour toutes les fonctions g rencontrées dans ce cours (et dans la vie courante), g(x) reste une v.a. véelle. On ne se posera pas ce genre de questions dans la suite.
(à traiter en théorie des mesures en L3)
(The state of the

e

Déf (Loi d'une v.a. réelle) On appelle la loi de $X: (\Lambda, F, P) \rightarrow R$ la probabilité sur R

 $\mathcal{M}_{\mathsf{X}}:\mathcal{B}(\mathbb{R})\longrightarrow [0,1]$

 $B \mapsto \mathcal{M}_{X}(B) := \mathbb{P}(X \in B)$

Rappel Si X v.a. discrète, sa loi UX est caractérisée par la densité discrète p_{x} :

 $\mathcal{M}_{X}(B) = \sum_{\mathbf{x} \in B \cap X(\Omega)} \mathcal{P}_{X}(\mathbf{x}) = \sum_{\mathbf{x} \in B \cap X(\Omega)} \mathcal{P}(X = \mathbf{x})$

Mais ce n'est pas vrai en généval : Pour X v.a. réelle, sa loi UX est caractérisée par $P(X \in]-\infty, t]), t \in \mathbb{R}$ (Admis)

Idée: les boréliens de IR sont "engendrés" par les intervalles du type J-2, t] (à voir en L3)

<u>Déf</u> (Indépendance)

Soient X1, ..., Xn des va véelles définies sur (I, F, IP) Elles sont dites indépendantes si pour tous intervalles (de IR)

I1, ..., In, on a $P(X_1 \in I_1, \dots, X_n \in I_n) = \prod P(X_i \in I_i)$

Pour une famille arbitraire de va réelles, elles sont dites indép Si toute sous-famille finie est composée de v.a. indép.

Soit $X: \Omega \rightarrow \mathbb{R}^+$ v.a. $\forall n \ge 1$, on definit la v.a. discrète $X_n = 2^{-n} \lfloor 2^n X \rfloor$ où $\lfloor x \rfloor = partie entière de <math>x \in \mathbb{R}$

- $0 \le X_n \le X \le X_n + 2^{-n}$, $\forall n \ge 1$
- $X_n \leq X_{n+1}$ Car $\lfloor 2x \rfloor \geq 2 \lfloor x \rfloor$, $\forall x \geq 0$ donc $\forall \omega \in \Omega$, $\lim_{n \to \infty} \uparrow X_n(\omega) = X(\omega)$

<u>Déf</u> (Espérance)

1) Si X est une v.a. réelle positive, on définit l'espérance de X comme $\mathbb{E}(X) := \lim_{n \to \infty} \mathbb{E}(X_n) \in [0, +\infty]$

où $X_n = 2^{-n} \lfloor 2^n X \rfloor$ pour tout $n \ge 1$. [Admis: Cette définition est cohérente avec celle quand X est discrète]

2) Si X est une v.a. réelle générale, on dit que X admet une espérance si au moins une des deux espérances $E(X^+)$ et $E(X^-)$ est finie.

Si c'est le cas, on définit

 $\mathbb{E}(X) := \mathbb{E}(X^+) - \mathbb{E}(X^-) \in [-\infty, +\infty]$

Par conséquent,

X admet une espérance finie $\iff \mathbb{E}(X^+) < +\infty$ et $\mathbb{E}(X^-) < +\infty$

 $\iff \mathbb{E}[|X|] = \mathbb{E}(X^+) + \mathbb{E}(X^-) < +\infty$

(par linéarité)

 $E(X) = \sum_{\omega \in \mathcal{L}} X(\omega) P(\{\omega\})$ n'est plus vrai sauf Ω dénombrable

À remplacer par une intégrale $\mathbb{E}(X) = \int_{\Omega} X(\omega) P(d\omega)$ (à voir en L3)

<u>Propriétés</u> (admis)

- Monotonie: Si $X \leq Y$ alors $\mathbb{E}(X) \leq \mathbb{E}(Y)$ pourvu que X et Y admettent une espérance
 - Si X admet une espérance, alors $|E(X)| \leq E(|X|)$
 - Linéarité: $\mathbb{E}(aX+bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$ si $X,Y \ge 0$, $a,b \ge 0$ ou si X et Y admettent une espérance finie, a, b \in R
- Si $X \perp \!\!\!\perp Y$, $\mathbb{E}(XY) = \mathbb{E}(X) \mathbb{E}(Y)$ si X et Y admettent une espérance finie ou si X, Y≥0

Covariance, variance, moments: même définition Inégalité de Markov, Bienaymé-Tchebychev, Canchy-Schnorz: idem \$4.2 Fonction de Vépartition Déf X v.a. véelle. On appelle fonction de vépartition de X la fonction $F_X : \mathbb{R} \longrightarrow [0,1]$ $t \mapsto F_{\mathsf{X}}(t) := \mathbb{P}(\mathsf{X} \leq t) = \mathbb{P}(\mathsf{X} \in]-\infty, t]$ $= \mu_{X}(J-\infty,t])$ Exercice 4.11 [Vidéo sur Moodle] $Z = ma \times \{X,Y\}$ v.a. réelle Soient X, Y v.a. réelles îndép, On a $F_z(t) = F_x(t) \cdot F_y(t)$, $\forall t \in \mathbb{R}$ Théorème (Admis) Deux v.a. réelles X et Y ayant la même fonction de répartition Fx = Fy ont la même loi Mx = My Donc, $F_X = F_Y \iff \mathcal{U}_X = \mathcal{U}_Y$ Prop 4.13 [Video sur Moodle] La fonction de répartition Fx a les propriétés suivantes: 1) F_X est croissante 2) F_X est continue à droite: $\forall t \in \mathbb{R}$ $F_X(t) = F_X(t^+) := \lim_{s \to t} F_X(s) = \lim_{s \to t} F_X(s)$ 3) $\lim_{t\to -\infty} F_X(t) = 0$ "F_X(-∞)=0" 4) $\lim_{t\to+\infty} F_X(t) = 1$ $F_{X}(+\infty) = 1''$

Remarque On verra dans Théorème 5.18 que toute fonction: R-IR qui vérifie ces propriétés est la fonction de réportition d'une v.a réelle Prop On note $F_{\times}(x^{-}) := \lim_{y \to x^{-}} F_{\times}(y) = \lim_{y \to x^{-}} F_{\times}(y)$ la limite à gauche de Fx au point x ER, qui existe grâce à la croissance de Fx. Alons $\forall x \in \mathbb{R}$, $\mathbb{P}(X=x) = F_X(x) - F_X(x^-)$ F_X est discontinue en $x \iff P(x=x) > 0$ Prewe Si y<x, $\{X \in]y,z]$ = $\{X \leq z\} \setminus \{X \leq y\}$ $\mathbb{P}(X \in \exists y, x \exists) = \mathbb{P}(X \leq x) - \mathbb{P}(X \leq y) = F_{X}(x) - F_{X}(y)$ $\{X \in J \times -\frac{1}{n}, xJ\}$, $n \ge 1$ est une suite décroissante d'événements $\bigcap_{X \in \mathcal{I}} \{ X \in \mathcal{I}_{\mathcal{R}_{i}} \times \mathcal{I}_{\mathcal{R}_{i}} \} = \{ X = x \}$ Par continuité de \mathbb{P} , $\mathbb{P}(X=x) = \lim_{n\to\infty} \sqrt{\mathbb{P}(X\in]x-\frac{1}{n},x]}$ = $\lim_{N\to\infty} F_X(x) - F_X(x-\frac{1}{n})$ $= F_{\times}(x) - \lim_{n \to \infty} F_{\times}(x - \frac{1}{n})$ Exercice: $= F_{X}(x) - F_{X}(x^{-})$ VaGR, P(X>a)=1-Fx(a), P(X<a)=Fx(a-), P(X≥a)=1-Fx(a-) $\forall a \leq b$, $\mathbb{P}(X \in]a,b] = F_X(b) - F_X(a)$, $\mathbb{P}(X \in [a,b]) = F_X(b) - F_X(a^-)$ $\mathbb{P}(X \in Ja, b\Gamma) = F_X(b^-) - F_X(a), \mathbb{P}(X \in [a, b\Gamma) = F_X(b^-) - F_X(a^-)$ — Fin Séance 8

Rappel: X v.a. réelle
Fonction de répartition
$$F_X: \mathbb{R} \to [0,1]$$
 $t \mapsto F_X(t) = \mathbb{P}(X \leqslant t)$

Exemple de calcul de fonction de répartition:

Expérience aléatoire: choisir un nombre ω "au hasard" dans $[0,1]$
 $\Omega = [0,1]$
 $F_1 = \mathcal{B}([0,1]) = t$ tribu engendrée par les intervalles $[a,b] \subset [0,1]$
 $\mathbb{P} = [0,1]$
 \mathbb{P}

$$F_{X}(t) = \mathbb{P}\left([0, \frac{1}{2}JE]\right) = \frac{1}{2}JE$$

$$F_{X}(t) \uparrow$$

$$\frac{1}{2} \downarrow$$

$$\mathbb{P}(X < 1) = F_{X}(1^{-}) = 0$$

$$\mathbb{P}(X = 1) = F_{X}(1) - F_{X}(1^{-}) = \frac{1}{2} - 0 = \frac{1}{2}$$

$$= \frac{1}{2} + \frac{$$

Epts de discontinuité de
$$F_X$$
 = $X(\Omega)$ la taille des sauts de F_X est donnée par la densité discrète P_X Remarque 2: Si F_X est continue, alors $H \in \mathbb{R}$, $\mathbb{P}(X=t)=0$

\$4.3 Fonction génératrice des moments

 $\frac{\text{Définition}: \times \text{v.a. réelle}. \text{ On appelle fonction génératrice des}}{\text{moments de } \times \text{ la fonction}}$ $M_{\times}: \mathbb{R} \longrightarrow \mathbb{R}_{+} \cup \{+\infty\}$ $M_X(t) = \mathbb{E}(e^{tX})$ bien définie t v.a. positive Remarque 1: Si X: $\Omega \rightarrow N$ v.a., $M_{\times}(t) = G_{\times}(e^{t})$ où $G_X(s) = \mathbb{E}(s^X)$ est la fonction génératrice Remarque 2: En général, Mx ne caractérise pas la loi de v.a. réelle X Théorème 4.16 [Vidéo sur Moodle]

S'il existe a>0 t.9. $M_X(t)<+\infty$ pour tout $t\in J-a.a[$, alors

1) X admet un moment d'ordre k fini pour tout $k\geq 1$ et pour tout $t\in J-a.a[$, $M_{\times}(t) = \sum_{k=0}^{+\infty} E(x^k) \frac{t^k}{k!}$ 2) Mx est infiniment dérivable sur J-a.a[La ke dérivée de Mx, notée M(k), vérifie que $M_{x}^{(k)}(t) = \mathbb{E}(X^{k}e^{tX}), \forall t \in]-a, a [$ En particulier, $M_{\times}^{(k)}(0) = \mathbb{E}(\times^k)$, $\forall k \ge 1$ "Prewe": 1) $M_X(t) = \mathbb{E}(e^{tX}) = \mathbb{E}(\sum_{k=0}^{+\infty} \frac{t^k x^k}{k!})$ $\frac{\bigwedge}{\uparrow} \sum_{k=0}^{+\infty} \mathbb{E}\left(\frac{t^k x^k}{k!}\right) = \sum_{k=0}^{+\infty} \mathbb{E}(x^k) \frac{t^k}{k!}$

àjustifier

1) => 2) : par le théorème de dérivation des séries entières Comparaison: Fonction génétrice des moments X: Q-IR Fonction génératrice X: Ω→N $M_X(t) = \mathbb{E}(e^{tX})$ $G_{X}(z) = \mathbb{E}(z^{X})$ $G_{\mathsf{X}}^{(k)}(1^{-}) = \mathbb{E}(\mathsf{X}(\mathsf{X}-1)\cdots(\mathsf{X}-k+1))$ $M_X^{(k)}(o) = \mathbb{E}(X^k)$ $M_X(t) = \sum_{k=0}^{\infty} E(X^k) \frac{t^k}{k!}$ $G_{\mathbf{x}}(z) = \sum_{k=0}^{\infty} \mathbb{P}(\mathbf{x} = k) z^{k}$ (à condition que M_X soit) finie sur un voisinage de 0) $\frac{1}{k!}G_{X}^{(k)}(0) = P(X=k)$ $G_{X+Y}(z) = G_X(z)G_Y(z)$ $Si \times ILY$ (pour z > 0 ou z \in R t.q. $G_X(z)$ et $G_X(z)$ finies) $M_{X+Y}(t) = M_X(t) M_Y(t)$ $Si \times LLY$ Chapitre V Variables aléatoires à densité § 5.1 V.a. réelles à densité (absolument continues) Définition: Une v.a. réelle X est dite abs. continue on à densité s'il existe une fonction positive $f_X: \mathbb{R} \to \mathbb{E}$ 0,+ $\infty \mathbb{E}$,

Riemann intégrable dans \mathbb{R} , telle que $\forall t \in \mathbb{R}$, $F_{X}(t) = \mathbb{P}(X \leq t) = \int_{-\infty}^{t} f_{X}(x) dx$ (intégrale de Riemann généralisée) Une telle fonction f_{X} est cupelée densité de X

Remarque 1: $\lim_{t\to+\infty} F_X(t) = \mathbb{P}(X<+\infty) = 1 \Rightarrow \int_{-\infty}^{+\infty} f_X(x) dx = 1$ Remarque 2: Tonte fonction positive $f: \mathbb{R} \to \mathbb{D}$, two \mathbb{L} Riemann-integrable sur \mathbb{R} et t.g. $\int_{-\infty}^{+\infty} f_{X}(x)dx = 1$ est la densité d'une v.a. abs. continue. puisque $F(t) = \int_{-\infty}^{t} f(x) dx$ possède les propriétes d'une fonction de répartition

Remarque 3 La densité d'une v.a. abs. continue n'est pas unique Si fx est une densité de X, pour tonte fonction g obtenue à partir de fx en modifiant sa valeur sur un ensemble fini de pts, $\int_{-\infty}^{t} g(x) dx = \int_{-\infty}^{t} f_{X}(x) dx$, donc 9 est aussi une densité de X. En pratique, on cliva "la" dersité de X, tout en gardant en tête qu'on peut charger sur guelques pts. Proposition Si X est une v.a. abs. continue, F_X est continue et $Y \times \in \mathbb{R}$, P(X=x)=0. Pour tous $a \leq b$, $P(X \in [a,b]) = P(X \in [a,b[) = P(X \in]a,b]) = P(X \in [a,b[))$ $= F_{\mathsf{X}}(b) - F_{\mathsf{X}}(a) = \int_{a}^{b} f_{\mathsf{X}}(x) dx$ <u>Preme</u>: $x \mapsto \int_{-\infty}^{\infty} f_x(t) dt$ est continue car f_X bornée sur un intervalle compaet, $\lim_{\xi \to 0^+} \int_X^{\chi+\xi} f_X(t) dt = 0$

Exemple (Loi uniforme continue sur [0,1]) $\Omega = [0,1]$ $\mathcal{H} = \mathcal{B}([0,1])$ P probabilité tq. $\forall 0 \le a \le b \le 1$, P(Ta.bJ) = b-aUne telle proba existe (à voir en L3). Elle est la mesure de Lebesgue Sur [0,1] $X: \omega \in \Omega \longrightarrow X(\omega) = \omega$ identité $F_{x}(t) = \{ 0, sit < 0 \}$ $|P(X \in [0,t]) = P([0,t]) = t \quad \text{si } t \in [0,1]$ $F_{X}(t) = \begin{cases} 0 & \text{si } t < 0 \\ 1 & \text{si } t \in]0,1[\\ 0 & \text{si } t > 1 \end{cases}$ $F_{X}(t) = \int_{-\infty}^{t} 1_{[0,1]}(x) dx = \int_{-\infty}^{t} 1_{J_{0,1}}(x) dx$ On dit que X est une v.a. uniforme sur [0,1] $X \sim \mathcal{U}(0,1)$ "choisir un réel au hascerd dans [0,1]" Exemple 5.4 transformation linéaire de X (à densité générale) [Vidéo sur Moodle] Exemple 5.6 $Y = X^2$, $X \sim U(0,1)$ est abs continue [Vidéo sur Moodle] trower sa densité

Si on pose $Z = X \cdot 1_{\{X \le \frac{1}{2}\}} \in [0, \frac{1}{2}]$ où $X \sim \mathcal{U}(0,1)$

$$P(\phi) = 0$$

$$P(x_{1}^{2} \times \{\frac{1}{2}\}) \leq 0 = P(x = 0) + P(x > \frac{1}{2})$$

$$= 0 + \int_{\frac{1}{2}}^{1} 1 dx = \frac{1}{2}$$

$$P(x_{1}^{2} \times \{\frac{1}{2}\}) \leq 1 = P(x \leq t) + P(x > \frac{1}{2})$$

$$= \int_{0}^{t} 1 dx + \int_{\frac{1}{2}}^{1} 1 dx = t + \frac{1}{2}$$

$$P(\Omega) = 1$$

$$F_{Z}(t)$$

$$F_{Z}$$

FAUX: une v.a. réelle est soit disvète, soit ets continue.

FIN SEANCE 9

Rappel: v.a. réelle
$$X$$
 abs. continue ou à densité $\exists f_{\times} : \mathbb{R} \rightarrow [0, +\infty \mathbb{L}]$ Riemann intégrable sur \mathbb{R} $F_{\times}(t) = \mathbb{P}(X \leq t) = \int_{-\infty}^{t} f_{\times}(x) dx$

· L'espérance de v.a. à demsité

$$\times$$
 v.a. de densité f_{\times} $g: \mathbb{R} \to [0, +\infty[$ fonction positive et continue par morceau \times $g(\times)$ v.a. positive dont l'espérance, bien définie dans $[0, +\infty]$,

est donnée par

$$\mathbb{E}(g(x)) = \int_{-\infty}^{\infty} g(x) f_{x}(x) dx$$

Idée de preuve quand X est positive:

Rappel:
$$\mathbb{E}(X) := \lim_{n \to \infty} \mathbb{E}(X_n) \in [0, +\infty]$$

où
$$X_n = 2^{-n} \lfloor 2^n X \rfloor$$
, $n \ge 1$ suite de v.a. discrètes

qui converge vers X en croissant.

$$\begin{aligned}
\forall k \in \mathbb{N}, & \mathbb{P}(X_n = 2^{-n}k) = \mathbb{P}(\lfloor 2^n X \rfloor = k) \\
&= \mathbb{P}(X \in \lceil k 2^{-n}, (k+1) 2^{-n} \lceil) \\
&= \int_{k 2^{-n}}^{(k+1) 2^{-n}} f_{X}(x) dx
\end{aligned}$$

$$\mathbb{E}(g(X_n)) = \sum_{k \in \mathbb{N}} g(k2^{-n}) \mathbb{P}(X_n = k2^{-n})$$

$$= \sum_{k \in \mathbb{N}} \int_{k2^{-n}}^{(k+1)2^{-n}} g(k2^{-n}) f_X(x) dx \quad \text{somme de Riemann}$$

$$\xrightarrow{f^{+\infty}} g(x) f(x) f(x) dx \quad \text{somme de Riemann}$$

$$\xrightarrow{n \to \infty} \int_{0}^{+\infty} g(x) f_{x}(x) dx = \int_{-\infty}^{+\infty} g(x) f_{x}(x) dx \xrightarrow{con \times 0} f_{x=0} \text{ sur } \mathbb{R}^{-}$$

Exemple: Fonction génératrice des moments
$$M_{X}(t) = \mathbb{E}\left(e^{tX}\right) = \int_{-\infty}^{+\infty} e^{tx} f_{X}(x) dx$$
Si $g: \mathbb{R} \rightarrow \mathbb{R}$ de signe quelconque, on applique cette formule de transfert aux g^{+} , g^{-} et $|g|$, et on obtient:

Proposition (Formule de transfert, cas intégrable)

Soit $g: \mathbb{R} \rightarrow \mathbb{R}$ fonction continue par mv -ceaux $\times va$. de densité f_{X}
La $v.a.$ $g(x)$ admet une espérance finie si et seulement si $|g(x)| f_{X}(x)$ est intégrable sur \mathbb{R}
 $\mathbb{E}\left(|g(x)|\right) < +\infty \iff \int_{-\infty}^{+\infty} |g(x)| f_{X}(x) dx < +\infty$

Dans ce cas, $\mathbb{E}(g(x)) = \int_{-\infty}^{+\infty} g(x) f_{X}(x) dx$

Exemple 5.11 Une $v.a.$ réelle \times de Cauchy n'admet pas d'espérance \times de Cauchy si elle a pour densite $f_{X}(x) = \frac{1}{\pi} \frac{1}{1+x^{2}}$
 $\mathbb{E}(X^{+}) = \int_{-\infty}^{+\infty} x^{+} f_{X}(x) dx = \int_{0}^{+\infty} x f_{X}(x) dx = \int_{0}^{+\infty} \frac{x}{\pi(1+x^{2})} dx = +\infty$

De même $\mathbb{E}(X^{-}) = \int_{-\infty}^{+\infty} x^{-} f_{X}(x) dx = \int_{-\infty}^{-\infty} \frac{-x}{\pi(1+x^{2})} dx = +\infty$

Donc $\mathbb{E}(X)$ n'existe pas, même si $\int_{-M}^{M} x f_{X}(x) dx = 0$, $\forall M>0$

 $car f_{x}(x) = f_{x}(-x)$

$$\begin{array}{lll} & \underbrace{ \text{Corollaire} : \times \text{admet un moment d'ordre } k \text{ fini} \\ & \rightleftharpoons \mathbb{E}(|x|^k) = \int_{-\infty}^{+\infty} |x|^k f_{\chi}(x) dx < + c \infty \\ & \text{dams ce cas}, \ \mathbb{E}(x^k) = \int_{-\infty}^{+\infty} x^k f_{\chi}(x) dx \\ & \underbrace{ \text{Comparaison} : \quad \text{Cas abs. continue} } & \underbrace{ \text{Cas discust} } \\ & \mathbb{E}(x) = \int_{-\infty}^{+\infty} x f_{\chi}(x) dx & \mathbb{E}(x) = \sum_{x \in X(2)} x f_{\chi}(x) \\ & \mathbb{E}(g(x)) = \int_{-\infty}^{+\infty} g(x) f_{\chi}(x) dx & \mathbb{E}(g(x)) = \sum_{x \in X(2)} g(x) f_{\chi}(x) \\ & \mathbb{E}(g(x)) = \int_{-\infty}^{+\infty} g(x) f_{\chi}(x) dx & \mathbb{E}(g(x)) = \sum_{x \in X(2)} g(x) f_{\chi}(x) \\ & \mathbb{E}(h(x)) = \int_{-\infty}^{+\infty} f(x) f_{\chi}(x) dx & \mathbb{E}(h(x)) = \int_{-\infty}^{+\infty} f(x) f_{\chi}(x) dx & \mathbb{E}(h(x)) = \int_{-\infty}^{+\infty} f(x) f_{\chi}(x) dx \\ & \mathbb{E}(h(x)) = \int_{-\infty}^{+\infty} f(x) f_{\chi}(x) dx & \mathbb{E}(h(x)) = \int_{-\infty}^{+\infty} f(x) f_{\chi}(x) dx \\ & \mathbb{E}(h(x)) = \int_{-\infty}^{+\infty} f(x) f_{\chi}(x) dx & \mathbb{E}(h(x)) \\ & \mathbb{E}(h(x)) = \mathbb{E}(h(x)) & \mathbb{E}(h(x)) \\ & \mathbb{E}(h(x)) = \mathbb{E}(h(x)) & \mathbb{E}(h(x)) \\ & \mathbb{E}(h(x)) = \mathbb{E}(h(x)) & \mathbb{E}(h(x)) \\ & \mathbb{E}(h(x)) = \int_{-\infty}^{+\infty} f(x) f_{\chi}(x) dx \\ & = \int_{0}^{1} f(x) dx & \mathbb{E}(h(x)) dx \\ & = \int_{0}^{1} f(x) dx & \mathbb{E}(h(x)) dx \\ & = \int_{0}^{1} f(x) dx & \mathbb{E}(h(x)) dx \\ & = \int_{-\infty}^{1} f(x) dx & \mathbb{E}(h(x)) dx \\ & = \int_{0}^{1} f(x) dx & \mathbb{E}(h(x) dx \\ & = \int_{0}^{1} f(x) dx$$

Par la remarque, on obtient que γ est abs. continue et admet pour densité $\frac{1}{2\sqrt{y}} 1_{0,1} \mathcal{E}^{(y)}$. § 5.2 Exemples importants de v.a. à densité

1) Loi uniforme continue

a, b \in \mathbb{R} \quad \alpha < b V.a. réelle abs. continue X est dite uniforme sur Ja, b[(ou [a,b]) et on écriva X ~ U(a,b), si elle admet pour densité $f_{X}(x) = \frac{1}{b-a} \mathcal{I}_{Ja,b[}(x)$ $f_{X} \text{ constante sur } \exists a,b [] \longrightarrow \text{``X est un réel choisi uniformément}$ $\text{nulle en dehors} \longrightarrow \text{``ou has and dans l'intervalle } \exists a,b [\text{``}intervalle } \exists a,b [\text{``}intervalle } \exists a,b [\text{``ontimue}]$ $F_{X}(t) = \int_{-\infty}^{t} f_{X}(x) dx = \begin{cases} 0 & \text{si } t \in a \\ \frac{t-a}{b-a} & \text{si } t \in a \end{cases}$ ``continuesi tzb $\mathbb{P}(X \in Ja, b\Gamma) = 1$ p.s. X est bornée $|X| \leq \max(|a|, |b|)$ X admet des moments finis de tout ordre $E(x) = \frac{1}{b-a} \int_{a}^{b} x \, dx = \frac{b^{2}-a^{2}}{2(b-a)} = \frac{a+b}{2}$ $\mathbb{E}(\chi^{2}) = \frac{1}{b-a} \int_{a}^{b} \chi^{2} d\chi = \frac{b^{3}-a^{3}}{3(b-a)} = \frac{a^{2}+ab+b^{2}}{3}$ $Var(X) = \frac{(b-a)^2}{42}$

Def Soit F:
$$\mathbb{R} \to \mathbb{R}$$
 fonction croissante, continue à droite et t.g.
 $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$
(alors $\forall x \in \mathbb{R}$, $0 \le F(x) \le 1$)

On définit le pseudo-inverse (on pseudo-réciproque) de
$$F$$

 $\varphi: \exists 0,1 \vdash \to \mathbb{R}$
 $\varphi(x) := \inf \{ y \in \mathbb{R} : F(y) \ge x \}$

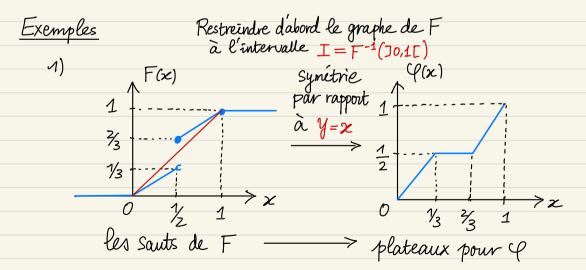
Remarques

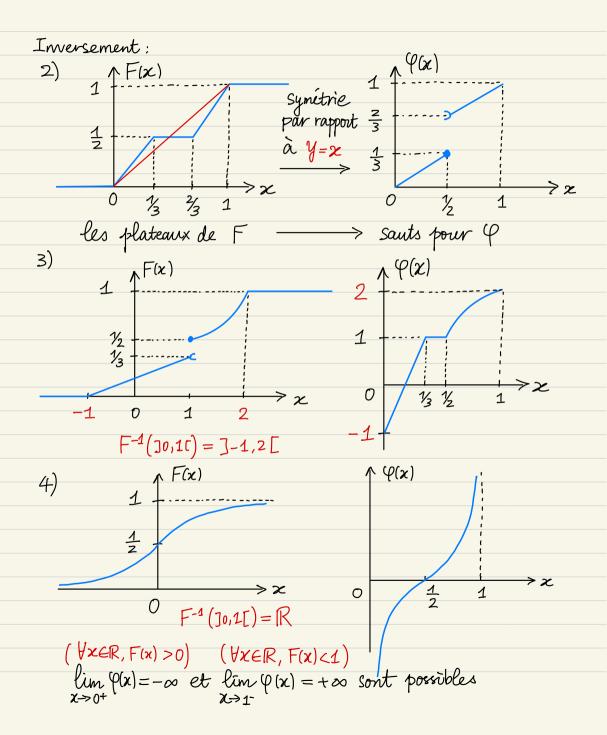
1) Si F est bijective de $F^{-1}(J_0,1E) := \{x \in \mathbb{R}: F(x) \in J_0,1E\}$ dans $J_0,1E$, on a $\varphi = F^{-1}$ (la fonction réciproque de F)

2) φ est continue à gauche et croissante sur Jv,1[

Théorème 5.18 [Vidéo sur Moodle] Soit $X \sim \mathcal{U}(0,1)$, alors $Y := \varphi(X)$ est une v.a. réelle dont la fonction de répartition Fy est F.

Très utile en simulation informatique, ce théorème permet de construire une v.a. de fonction de vépartition donnée, à partir d'une v.a. $\sim U(0,1)$.





2) Loi exponentielle

X est dite exponentielle de paramètre
$$\lambda > 0$$
, $X \sim E(\lambda)$
 $\Rightarrow X$ a densité $\int_{X}(x) = \lambda e^{-\lambda x} \mathbf{1}_{]0,+\infty[}(x)$

Si $t < 0$, $F_{X}(t) = 0$

Si $t > 0$, $F_{X}(t) = \int_{-\infty}^{t} \int_{X}(x) dx = \int_{0}^{t} \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x} \right]_{0}^{t} = 1 - e^{-\lambda t}$
 $\mathbb{E}(X) = \int_{0}^{t \infty} x \lambda e^{-\lambda x} dx = \left[-xe^{-\lambda x} \right]_{0}^{t \infty} + \int_{0}^{t \infty} e^{-\lambda x} dx \quad \text{indigration}$
 $= 0 + \left[-\frac{1}{\lambda} e^{-\lambda x} \right]_{0}^{t \infty} = \frac{1}{\lambda}$
 $\mathbb{E}(X^{2}) = \int_{0}^{t \infty} x^{2} \lambda e^{-\lambda x} dx = \left[-x^{2} e^{-\lambda x} \right]_{0}^{t \infty} + \frac{2}{\lambda} \int_{0}^{t \infty} x \lambda e^{-\lambda x} dx$
 $= 0 + \frac{2}{\lambda} E(X) = \frac{2}{\lambda^{2}}$

Absence de mémoire comme la lai géométrique

Prop Si $X \sim E(\lambda)$, alons $Y > t \geq 0$
 $\mathbb{P}(X > s + t \mid X > s) = \mathbb{P}(X > t)$
 $\mathbb{P}(X > s + t \mid X > s) = \mathbb{P}(X > t)$
 $\mathbb{P}(X > s + t \mid X > s) = \mathbb{P}(X > t)$
 $\mathbb{P}(X > s + t \mid X > s) = \frac{P(X > s + t)}{P(X > s)}$
 $= e^{-\lambda t} = \mathbb{P}(X > t)$

Suppose que $X \perp Y$. Soit $Z = \min\{X, y\}$
 $Y \leftarrow E(\lambda)$, $Y \sim E(\lambda)$
 $= \mathbb{P}(X > t) \mathbb{P}(Y > t)$
 $= \mathbb{P}(X > t) \mathbb{P}(X > t)$
 $= \mathbb{P}(X > t) \mathbb{P}(X > t)$
 $= \mathbb{P}(X > t) \mathbb{P}(X > t)$

3) Loi normale (gaussienne) Z est dite normale (au gaussienne) standard (ou centrée réduite) si Z a pour densité $f_Z(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$, $x \in \mathbb{R}$

on écrira $Z \sim \mathcal{N}(0,1)$

Intégrale de Gauss $\int_{-\infty}^{+\infty} e^{-\chi^2} d\chi = \sqrt{\pi} \implies \int_{-\infty}^{+\infty} e^{-\frac{\chi^2}{2}} d\chi = \sqrt{2\pi}$ (utilise une intégrale double qu'on exprime en coordonnées contésiennes, puis en coordonnées polaires.

Fonction de vépartition notée $\frac{1}{\sqrt{2\pi}}$ de n'admet pas d'écriture plus simple

$$\mathbb{E}(Z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x e^{-\frac{x^2}{2}} dx = 0$$

fonction intégrable sur IR et impaire $Var(Z) = \mathbb{E}(Z^2) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^2 e^{-\frac{\pi}{2}} dx$

$$=\frac{1}{\sqrt{2\pi}}\left(\left[-xe^{-\frac{x^2}{2}}\right]^{+\infty} + \int_{-\infty}^{+\infty}e^{-\frac{x^2}{2}}dx\right) = 1$$

MER, TZO donnés

On definit $X := \nabla Z + \mu$ (E(X)= μ et $Var(X) = \Gamma^2$) Si $\nabla > 0$, on vérifie (exemple 5.4) que X a pour densité $f_{\chi}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(\chi-\mu)^2}{2\sigma^2}}$

Une v.a. de cette densité est appelée normale (on ganssienne) d'esperance (on de moyenne) nER et de variance o² On écrira X~N(µ, r²)

lar convention X=μ si σ=0 Si $\Gamma > 0$, $\times \sim \mathcal{N}(\mu, \Gamma^2) \iff \frac{X - \mu}{\sigma} \in \mathcal{N}(0, 1)$ Prop 5.21 (exercice) Une transformation affine d'une v.a. normale reste une v.a. normale. Plus précisément, $\forall a.b \in \mathbb{R} \quad \times \sim \mathcal{N}(\mu, \sigma^2) \Rightarrow a \times + b \sim \mathcal{N}(\tilde{\mu}, \tilde{\tau}^2)$ où $\widehat{\mu} = a\mu + b$ et $\widehat{\tau}' = \widehat{\alpha} \sigma^2$ Fonction génératrice des moments: Prop Si $Z \sim N(0,1)$, $M_Z(t) = e^{\frac{t^2}{2}}$, $t \in \mathbb{R}$ Si $X \sim N(\mu, \Gamma^2)$, $M_X(t) = e^{\mu t + \frac{\sigma^2}{2}t^2}$, $t \in \mathbb{R}$ Preme $M_z(t) = \int_{-\infty}^{+\infty} e^{tx} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{tx-\frac{1}{2}x^2} dx$ $= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{\frac{t^2}{2} - \frac{1}{2}(x - t)^2} dx$ $= e^{\frac{t^2}{2}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x - t)^2} dx = e^{\frac{t^2}{2}}$ $M_X(t) = \mathbb{E}(e^{t \times}) = \mathbb{E}(e^{t(rZ+\mu)}) = e^{\mu t}\mathbb{E}(e^{t\sigma Z})$ $= e^{\mu t} M_{z}(tr) = e^{\mu t + \frac{\sigma^{2}}{2}t^{2}}$ Corollaire Pour $Z \sim \mathcal{N}(\bar{0},1)$, $\forall k \ge 0$ $\mathbb{E}(Z^{2k+1}) = 0$ $\mathbb{E}(\mathbf{z}^{2k}) = \frac{(2k)!}{2^k \cdot k!}$ $\sum_{k \ge 0} \frac{t^{2k}}{2^k \cdot k!} = e^{\frac{t^2}{2}} = M_{Z}(t) = \sum_{k \ge 0} \mathbb{E}(Z^k) \frac{t^k}{k!}$ Preuve: Donc $\mathbb{E}(\mathbb{Z}^{2k+1}) = 0$ et $\mathbb{E}(\mathbb{Z}^{2k}) = \frac{(2k)!}{2^k k!}$

Prop 5.22 (Voir l'exemple 5.32 dans la section suivante)

"La somme de deux v.a. normales indép est normale"

Si $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$, $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$ et $X \perp Y$,

alors $X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

En utilisant l'indép par paquets et un argument de vécurrence, on a <u>Corollaire</u> Soient X_1, \dots, X_n des v.a. normales indép Toute combinaison linéaire $X := a_1 X_1 + \dots + a_n X_n + b$

avec $a_1, \dots, a_n, b \in \mathbb{R}$, est une v.a. normale.

FIN SÉANCE 10

5.3 Vecteurs aléatoires à densité

Cas vecteur aléatoire (X, Y) \in R^2 \tale \text{êtuclier en détail}

Cas (X1, ..., Xn) \in R^n reste analogue

Déf Un vecteur aléatoire (x,y) à valeurs dans \mathbb{R}^2 est dit absolument continu on à densité s'il existe $f_{x,y}: \mathbb{R}^2 \to I_0, +\infty I$ întégrable sur \mathbb{R}^2 t.q. $\forall I, J$ întervalles de \mathbb{R}

 $P((X,Y) \in I \times J) = P(X \in I, Y \in J) = \int_{I \times J} f_{X,Y}(x,Y) dx dy$ $f_{X,Y}$ appelée densité du vecteur aléatoire (X,Y).

Remarque 1 En prenant I=J=IR, on a $\int_{\mathbb{R}^2} f_{x,y}(x,y) dxdy = 1$

Remarque 2 Réciproquement, tonte fonction $f: \mathbb{R}^2 \to \mathbb{I}^2$, $+\infty\mathbb{I}$ intégrable Sur \mathbb{R}^2 et d'intégrale 1 est la densité d'un vecteur aléatoire dans \mathbb{R}^2 (admis)

Remarque 3 Densité de (X,Y) n'est pas déterminée de façon unique. Si $g:\mathbb{R}^2 \to \text{To,} +\infty \text{T coincide avec } f_{X,Y}$ en dehors d'un ensemble de mesure 2-dimensionnelle nulle (voir le cours d'intégrale de Lebesgue), 9 est aussi une densité de (X,Y) Remarque 4 PCCIR² borêlien $P((X,Y) \in C) = \int_C f_{X,Y}(x,y) dxdy$ (integrale ou sens de Lebesgue) $= \int_{\mathbb{R}^2} f_{x,y}(x,y) \, \mathcal{I}_{\mathcal{C}}(x,y) \, dx \, dy$ La densité d'un vecteur aléatoire abs. continu caractérise sa loi.
(Admis) Exemple (Vecteur aléatoire uniforme continu) $C \subset \mathbb{R}^2$ borélien, on note $\operatorname{mes}(C) = \int_{\mathbb{R}^2} 1_C(x,y) dxdy$ Suppose $0 < mes(c) < +\infty$.

Mesure de Lebesgue de C $(x,y) \sim U(C)$ loi uniforme continue Sur CSi (x,y) est abs. continu de densité $\frac{1}{mes(C)} 1_C(x,y)$ (X,Y) uniforme sur C représente un point uniformément choisi au hasard dans C. Rappel Fubini-Tonnelli Soit $g: \mathbb{R}^2 \to \mathbb{R}^+$ une fonction (mesurable) positive $\forall I, J$ intervalles de \mathbb{R} $\int_{I\times J} g(x,y) dxdy = \int_{I} \left(\int_{J} g(x,y) dy \right) dx$

 $= \int_{\mathcal{J}} \left(\int_{\mathcal{I}} g(x, y) dx \right) dy$

f_{x,y} densité jointe de x, y fx et fy densités marginales $\frac{\text{Prewe}}{P(x \in I)} = P(x \in I, y \in R) = P((x, y) \in I \times R)$ $=\int_{T\times IR}^{\prime}f_{x,y}(x,y)dxdy$ par Fubini-Tonnelli $= \int_{\mathcal{L}} \left(\int_{\mathcal{R}} f_{x,y}(x,y) dy \right) dx$ analogue pour $y = f_{x}(x)$ 'Une autre application de Fubini-Tonnelli: calculer la densité de X+Y Proposition 5.28 [Vidéo sur Moodle]

Soit (X,Y) un vecteur aléatoire de densité $f_{X,Y}$ Alors X+Y est une v.a. abs. continue de densité $f_{X+y}(z) = \int f_{X,y}(x,z-x) dx = \int_{-\infty}^{\infty} f_{X,y}(z-y,y) dy$ à condition que $x \mapsto f_{x,y}(x,z-x)$ soient intégrables sur R $y\mapsto f_{x,y}\left(z-y,y\right)$ Proposition 5.29 (Indépendance et densité)

1) Soit (x,y) un vecteur aléatoire abs. continu,

Si $f_{X,Y}(x,y) = f_X(x) f_Y(y)$ pour tout $(x,y) \in \mathbb{R}^2 \setminus \mathbb{C}$ où C est un ensemble de mesure 2-dimensionnelle nulle (C) peut être vide) alors X et Y sont indép. 2) Réciproquement, si X,Y sont indép et abs. continues de densité f_X , f_Y alors le vecteur (X,Y) est abs. continu et de densité jointe $f_{X,Y}(x,y) = f_X(x) f_Y(y)$ Preuve 1) HI, JCR intervalles $\mathbb{P}(X \in I, Y \in J) = \int_{I \times J} f_{X,Y}(x,y) dx dy$ = $\int_{I\times J} f_x(x) f_y(y) dx dy$ par hypothèse $= \left(\int_{I} f_{x}(x) dx \right) \cdot \left(\int_{T} f_{y}(y) dy \right)$ par Fubini-Tonnelli

$$= \mathbb{P}(x \in I) \mathbb{P}(y \in J)$$

$$= \mathbb{P}(x \in I) \mathbb{P}(x \in I)$$

$$= \mathbb{P}(x \in I)$$

$$= \mathbb{P}(x \in I) \mathbb{P}(x \in I)$$

$$= \mathbb{P}(x \in I$$

 $\mathbb{P}((X,Y)\in I\times J)=\mathbb{P}(X\in I,Y\in J)$

$$= \mathbb{P}(x \in I) \, \mathbb{P}(y \in J) \quad \text{por indep}$$

$$= \int_{I} f_{x}(x) dx \cdot \int_{J} f_{y}(y) dy$$

$$= \int_{I \times J} f_{x}(x) f_{y}(y) dx dy \quad \text{par Fubini-Tonnelli}$$
une densité de (x,y)

Remarque 1 En pratique, pour montrer XIIY, il suffit que $f_{x,y}$ se factorise sons la forme $f_{x,y}(x,y) = \alpha(x) \cdot \beta(y)$

où $\alpha: \mathbb{R} \to \mathbb{R}^+$ et $\beta: \mathbb{R} \to \mathbb{R}^+$ sont des fonctions (mesurables) Nécessairement, $\exists \lambda \in (0, +\infty)$ t.q. $\lambda \alpha(\alpha)$ est la densité de χ $\chi^{-1}\beta(y)$ est la densité de χ [Voir Remarque 3.18 du poly en cas discret] Remarque 2

Un vecteur aléatoire

est abs. continu

vraie si les composantes sont indép. Par exemple: soit X une v.a. abs. Continue $P((X,X) \in A) = 1 \quad \text{où } A = \{(X,Y) \in \mathbb{R}^2 : X = Y\} \text{ la diagonale}$ Or $\int_{\mathbb{R}^2} 1_A(x,y) dx dy = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} 1_A(x,y) dx \right) dy$ par Fubini-Tonnelli $= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} 1_{\{y\}}(x) \, dx \right) dy = \int_{\mathbb{R}} 0 \, dy = 0$ A est de mesure 2-dimensionnelle nulle. (X,X) n'est pas un vecteur aléatoire abs. Continu Sinon, en modifiant arbitrairement les valeurs de la densité $f_{X,X}$ sur A, on obtient facilement une contradiction avec $1 = \mathbb{P}((x, x) \in A) = \int_{A}' f_{x, x}(x, y) dx dy$ En combinant Prop 5.28 et 5.29, on a Corollaire Si X, Y sont des v.a. indép, de densité f_X et f_Y alors X+Y est abs. Continue de densité $f_{X+y}(z) = f_X * f_y(z) := \int_{-\infty}^{\infty} f_X(x) f_y(z-x) dx$ $= f_{y} * f_{x} (z) := \int_{-\infty}^{+\infty} f_{x}(z-y) f_{y}(y) dy$

La fonction $f_x * f_y = f_y * f_x$ appelée produit de convolution de f_x et f_y

Application: Exemple 5.32 [Vidéo sur Moodle]
Si X~ N(0,1) et Y~ N(0,1) avec XIIY

alors $X+Y \sim N(0,2)$ (voir Proposition 5.22 pour le vésultat plus général)

• Formule de transfert pour calculer les espérances: Prop 5.33 (version intégrable, admise)

Soit (x,y) un vecteur aléatoire abs. continu de densité $f_{x,y}$ Soit $g: \mathbb{R}^2 \to \mathbb{R}$ une fonction continue sur $\mathbb{R}^2 \setminus \mathbb{C}$ où \mathbb{C} est de mesure 2-dimensionnelle nulle. Alors g(x,y) admet une espérance finie

 \Leftrightarrow fonction $|g(x,y)| f_{x,y}(x,y)$ est intégrable sur \mathbb{R}^2

Dans ce cas, $\mathbb{E}(g(x,y)) = \int_{\mathbb{R}^2} g(x,y) f_{x,y}(x,y) dxdy$

Remarque: version positive $g: \mathbb{R}^2 \to \mathbb{R}^+$ on a toujours $\mathbb{E}(g(x,y)) = \int_{\mathbb{R}^2} g(x,y) f_{x,y}(x,y) dx dy$.

Remarque 5.34 (Admise)

(x,y) abs. Continu de densité $f_{x,y}$ \iff $f h: \mathbb{R}^2 \to \mathbb{R}$ fonction bornée (ou positive) et continue sauf au plus sur un ensemble de mesure 2-dim nulle, on a

$$\mathbb{E}(h(x,y)) = \int_{\mathbb{R}^2} h(x,y) f_{x,y}(x,y) dx dy$$

Application: Exemple 5.35 [Vidéo sur Moodle]

La méthode de Bux-Müller pour simuler une loi normale, où la méthode d'inversion ne s'applique pas.

$$\begin{array}{c} \text{U1,U2} \quad \text{indep, de loi} \sim \text{U(0,1)} \\ \text{On pose} \quad R = \sqrt{-2 \ln U_1} \\ \text{El} \quad R \coprod \\ \text{El} \\ \text{et} \quad X = R \cos(P), \; Y = R \sin(P) \\ \text{En calculant} \quad \mathbb{E}(h(X,Y)) \quad \text{avec} \quad h \in \mathcal{C}_b(R^2,R) \; \text{(on } h \in \mathcal{C}(R^2,R^+)), \\ \text{Montrer que} \quad X \sim \mathcal{N(0,1)} \quad \text{et} \quad X \coprod Y \\ \text{Y} \sim \mathcal{N(0,1)} \\ \text{Rappel: Formule de changement de variable} \\ \mathcal{U}, \; V \subset R^2 \quad \text{otwerts} \\ \mathcal{Q}: \; V \rightarrow \mathcal{U} \quad \mathcal{C}^1 - \text{diffeomorphisme} \\ \text{• } \quad \mathcal{Q}: \; V \rightarrow \mathcal{U} \quad \mathcal{C}^1 - \text{diffeomorphisme} \\ \text{• } \quad \mathcal{Q}: \; V \rightarrow \mathcal{U} \quad \mathcal{C}^1 - \text{diffeomorphisme} \\ \text{• } \quad \mathcal{A}envies partielles de \; \mathcal{Q} \; \text{continues sur} \; V \\ \text{• } \quad \text{matrice jacobienne de} \quad \mathcal{Q} = (\mathcal{Q}_1, \mathcal{Q}_2) \\ \quad \mathcal{J}_{\mathcal{Q}}(s,t) = \begin{pmatrix} \frac{\partial \mathcal{Q}_1}{\partial s} & \frac{\partial \mathcal{Q}_2}{\partial t} \\ \frac{\partial \mathcal{Q}_2}{\partial s} & \frac{\partial \mathcal{Q}_2}{\partial t} \end{pmatrix} \; \text{est inversible} \; \left(\Leftrightarrow \det \mathcal{J}_{\mathcal{Q}}(s,t) \neq 0 \right) \\ \quad \mathcal{V}(s,t) \in V \\ \quad \mathcal$$

Chapitre VI Loi des grands nombres et Convergence en probabilité

§ 6.1 Loi des grands nombres

Soit (Xi)_{i > 1} une suite de variables aléatoires réelles

On définit pour n > 1 la variable aléatoire réelle

 $\overline{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ moyenne empirique des n premières X_i

Théorème 6.1 (Loi des grands nombres)

Soit $(Xi)_{i\geq 1}$ une suite de v.a. réelles indép et identiquement distribuées (i.i.d.), qui admettent une expérance finie. On note $M = \mathbb{E}(Xi)$. Alors $\forall \, \geq 0$, $\lim_{n \to \infty} \mathbb{P}(|X_n - M| > \epsilon) = \lim_{n \to \infty} \mathbb{P}(|\frac{\sum_{i=1}^{n} X_i}{n} - M| > \epsilon) = 0$

Kemarque 1 (Xi) i 21 Sont de même loi $E(\overline{X}_n) = \frac{1}{n} \sum_{i=1}^n E(X_i) = \mu$

Remarque 2 Loi des grands nombres (LGN) rend rigouveuse l'idée de l'approche fréquentiste des probabilités

 X_1, \dots, X_N les valeurs de $X = 1_A$ pendant N répétitions indép de l'expérience.

 $\sum_{i=1}^{n} X_i = N_A = nb$. de fois qu'on a observé A

 $\frac{X_1 + \cdots + X_N}{N} = \frac{N_A}{N} \approx \mathbb{P}(A) = \mathbb{E}(1_A)$ quand $N \gg 1$.

Remarque 3 La condition d'espérance finie est cruciale

1° contre-exemple:
$$(Xi)_{i\geq 1}$$
 iid de loi de Cauchy (densité $f(x) = \frac{1}{\pi(1+x^2)}$)

Xi n'admet pas d'espérance

(Admis) $X_n = \frac{1}{n} \sum_{i=1}^n X_i$ Suit aussi la loi de Cauchy!

 $\forall M \in \mathbb{R}, \ E > 0$
 $\mathbb{P}(|X_n - M| > E) = 1 - \mathbb{P}(|X_n - M| \le E)$

$$\mathbb{P}(|\overline{X}_{n}-\mu|>\epsilon) = 1 - \mathbb{P}(|\overline{X}_{n}-\mu|\leq\epsilon)
 = 1 - \int_{\mu-\epsilon}^{\mu+\epsilon} \frac{dz}{\pi(1+z^{2})}
 = 1 - \frac{1}{\pi}(\arctan(\mu+\epsilon) - \arctan(\mu-\epsilon)) > 0$$

ne dépend pas de n (Xi)iz1 ne vérifie pas la loi des grands nombres.

Une version plus faible de LGN (utilisée pour démontrer Théorème 61)

Proposition Soit (Xi) i z 1 une suite de V.a. réelles i.id. qui admettent un moment d'ordre 2 fini (et donc aussi une

espérance finie). On note $\mathcal{U} = \mathbb{E}(X_i)$, $\sigma^2 = Var(X_i) < +\infty$ $\forall \varepsilon > 0$ fin $\mathbb{P}(|\overline{X}_n - \mu| > \varepsilon) = 0$

Prewe $\mathbb{E}(\bar{X}_n) = \mu$ $\begin{aligned} Var(\bar{X}_n) &= Var(\frac{1}{n} \sum_{i=1}^n X_i) = \frac{1}{n^2} Var(\sum_{i=1}^n X_i) \\ &= \frac{1}{n^2} \sum_{i=1}^n Var(X_i) \quad \text{par indép des } X_i \\ &= \frac{\sigma^{-2}}{n} \end{aligned}$

Par inegalité de Bienaymé-Tchebychev.

$$\mathbb{P}(|X_n-\mu|>\xi) \leqslant \frac{Var(|X_n|)}{\varepsilon^2} = \frac{\sigma^2}{\varepsilon^2 n} \xrightarrow{n\to\infty} 0$$
Preuve du théorème 6.1: voir la vidéo sur Moodle.

$$\frac{56.2}{\varepsilon^2} \text{ Une application de LGN: méthode de Monte-Carlo}$$
1) Estimer numériquement une intégrale $\int_a^b f(x) dx$

$$(Xi)_{i\geqslant 1} \text{ une suite de va. i.i.d. de loi uniforme } \mathcal{U}(a.b)$$

$$\mathbb{E}(f(Xi)) = \frac{1}{b-a} \int_a^b f(x) dx$$
Appliquer LGN à $(f(Xi), i \ge 1)$ suite i.i.d.:

$$\frac{1}{\varepsilon} \ge 0, \ \lim_{n\to\infty} \mathbb{P}(\left|\frac{1}{n}\sum_{i=1}^{\infty} f(X_i) - \frac{1}{b-a} \int_a^b f(x) dx\right| > \varepsilon) = 0$$
Vitense d'approximation:

$$\mathbb{P}(\left|\frac{1}{n}\sum_{i=1}^{\infty} f(X_i) - \frac{1}{b-a} \int_a^b f(x) dx\right| > \varepsilon) \leqslant \frac{Var(\frac{1}{n}\sum_{i=1}^{\infty} f(X_i))}{\varepsilon^2}$$

$$= \frac{1}{n} Var(f(X_i))$$
Si f bornée $(|f| \le M)$, alors

$$\mathbb{P}(\left|\frac{1}{n}\sum_{i=1}^{\infty} f(X_i) - \frac{1}{b-a} \int_a^b f(x) dx\right| > \varepsilon) \leqslant \frac{M^2}{n \varepsilon^2}$$
Donc, $\forall 8 > 0$, si $n \ge \frac{\mathbb{E}(f(X_i)^2)}{5\varepsilon^2}$ (ou $\frac{M^2}{5\varepsilon^2}$), alors

avec proba $1-\delta$, $\frac{1}{b-a} \int_a^b f(x) dx$ est proche de $\frac{1}{n} \sum_{i=1}^{\infty} f(X_i)$ à ε près.

2) Estimer la probabilité d'un événement A
$$1_A \sim \text{Bern}(P(A))$$
 $M = \mathbb{E}(1_A) = P(A)$
 $\nabla^2 = \text{Var}(1_A) = P(A)(1-P(A)) \leq \frac{1}{4}$
 $(Xi)_{i \geq 1}$ iid de loi de Bernoulli de paramètre $P(A)$
 $(Xi \text{ indicatrice que } A \text{ soit réalisé lors de la i-ème expérience})$
 $\forall \geq >0$, $P(|\frac{1}{n}|\sum_{i=1}^{n}Xi-P(A)|> \geq) \leq \frac{\sigma^2}{n \epsilon^2} \leq \frac{1}{4\epsilon^2n}$

Exemples de mise en pratique: voir page 75 du poly et page 81 du poly.

§ 6.3 Convergence en probabilité pour une suite de Va .

Définition Soient $(X_n)_{n\geq 1}$ et X des Va . réelles définies sur le même espace probabilisé (Ω, F, P) . On dit que la suite $(X_n)_{n\geq 1}$ Converge en $(P-)$ probabilité vers X (noté $(X_n) \xrightarrow{P} X$) si $\forall \geq >0$, $\lim_{n\to\infty} P(|X_n-X|>\epsilon)=0$

On dit que $(X_n) \xrightarrow{P} +co$ (resp. $-co$) si $\forall A>0$, $\lim_{n\to\infty} P(X_n< A)=0$ (resp. $-co$) si $\forall A>0$, $\lim_{n\to\infty} P(X_n< A)=0$ (resp. $-co$) si $(X_n)_{n\geq 1}$ converge en $(X_n)_{n\geq 1}$

Remarque 2 LGN: si
$$(X_i)_{i\geq 1}$$
 iid d'espérance finie $M = \mathbb{E}(X_i)$ alors $\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right)_{n\geq 1}\stackrel{\mathbb{P}}{\longrightarrow} M$

Exemple: $(X_i)_{i\geq 1}$ v.a. i.i.d. de loi $\mathcal{E}(1)$
 $M_n = \max\{X_1, \dots, X_n\}$
 $\mathbb{P}(M_n < A) = \mathbb{P}(X_i < A \text{ pour tout } 1 \le i \le n)$
 $= \prod_{i=1}^{n} \mathbb{P}(X_i < A) \quad \text{par indép}$
 $= \mathbb{P}(X_1 < A)^n = (1 - e^{-A})^n = \mathbb{P}(M_n \le A)$
 $\forall A > 0, 1 - e^{-A} < 1 \implies \lim_{n \to \infty} \mathbb{P}(M_n < A) = 0$
 $\exists \text{ Tonc } (M_n) \stackrel{\mathbb{P}}{\longrightarrow} +\infty$

Pour faire mieux, on prend $A = (1 \pm \mathcal{E}) \ln n \quad \text{avec } \mathcal{E} > 0$
 $\mathbb{P}(M_n < (1 - \mathcal{E}) \ln n) = (1 - e^{-(1 - \mathcal{E}) \ln n})^n$
 $= (1 - \frac{1}{n^{1-\mathcal{E}}})^n$

Pour faire mieux, on prend
$$A = (1 \pm \varepsilon) \ln n$$
 avec $\varepsilon > 0$

$$\mathbb{P}\left(M_n < (1-\varepsilon) \ln n\right) = (1-e^{-(1-\varepsilon) \ln n})^n$$

$$= (1-\frac{1}{n^{1-\varepsilon}})^n$$

$$\ln\left((1-\frac{1}{n^{1-\varepsilon}})^n\right) = n \ln\left(1-\frac{1}{n^{1-\varepsilon}}\right) \sim n \left(-\frac{1}{n^{1-\varepsilon}}\right) = -n^{\varepsilon}$$

$$\lim_{n\to\infty} \ln\left((1-\frac{1}{n^{1-\varepsilon}})^n\right) = -\infty$$

$$\operatorname{Donc} \quad \lim_{n\to\infty} \mathbb{P}\left(M_n < (1-\varepsilon) \ln n\right) = 0$$

 $P(M_n > (1+\epsilon) l_n n) = 1 - P(M_n \leq (1+\epsilon) l_n n)$ = 1 - (1 - e^{-(1+\epsilon) l_n n})ⁿ

$$P(M_{n} > (1+\epsilon) \ell_{n} n) = 1 - (1 - \frac{1}{n^{1+\epsilon}})^{n}$$

$$- \ln \left((1 - \frac{1}{n^{1+\epsilon}})^{n} \right) = n \ln \left(1 - \frac{1}{n^{1+\epsilon}} \right) \underset{n \to \infty}{\sim} n \cdot \left(-\frac{1}{n^{1+\epsilon}} \right)$$

$$\lim_{n \to \infty} \ln \left((1 - \frac{1}{n^{1+\epsilon}})^{n} \right) = 0$$

$$Donc \quad \lim_{n \to \infty} |P(M_{n} > (1+\epsilon) \ell_{n} n)| = 1 - 1 = 0$$

$$\text{Ainsi} \quad \forall \epsilon > 0, \quad \lim_{n \to \infty} P\left(\left| \frac{M_{n}}{\ell_{n} n} - 1 \right| > \epsilon \right)$$

$$= \lim_{n \to \infty} |P(M_{n} > (1+\epsilon) \ell_{n} n)| + |P(M_{n} < (1+\epsilon) \ell_{n} n)|$$

$$= 0$$

$$\text{Conclusion} \quad \left(\frac{M_{n}}{\ell_{n} n} \right)_{n \ge 2} \xrightarrow{p} 1$$

$$\text{Proposition 6.9} \quad \text{(complément à LGN)} \quad \text{[Vidéo sur Moodle]}$$

$$\text{Soit (Xi)}_{i \ge 1} \text{ une suite de v.a. iid positives, d'espérance} + \infty.$$

$$\text{Alous} \quad \left(\frac{1}{n} \sum_{i=1}^{n} \chi_{i} \right)_{n \ge 1} \xrightarrow{p} + \infty$$

Proposition 6.10 (Admise)

Si $(X_n) \xrightarrow{\mathbb{P}} X$ et $(Y_n) \xrightarrow{\mathbb{P}} Y$ (où toutes les va. Sont définies sur le même espace probabilisé (Ω, F, \mathbb{P})), alors $\forall f : \mathbb{R}^2 \to \mathbb{R}$ continue $(f(X_n, Y_n))_{n \ge 1} \xrightarrow{\mathbb{P}} f(X, Y)$ En particulier, $\forall g : \mathbb{R} \to \mathbb{R}$ continue, $(g(X_n)) \xrightarrow{\mathbb{P}} g(X)$

et $(X_n + Y_n) \xrightarrow{\mathbb{P}} X + Y$ on encore $(X_n Y_n) \xrightarrow{\mathbb{P}} XY$ prewe: page 77 du poly. Proposition (Admise) $Si(Xn) \rightarrow X$ alors $\forall f: \mathbb{R} \rightarrow \mathbb{R}$ continue bornée, $\lim_{n\to\infty} \mathbb{E}(f(X_n)) = \mathbb{E}(f(X))$ $(X_n) \xrightarrow{\mathbb{P}} X$ n'implique pas $\mathbb{E}(X_n) \longrightarrow \mathbb{E}(X)$ $\begin{array}{l} (f(x)=x \text{ n'est pas born\'ee})\\ \hline \text{Exemple}: (X_n)_{n\geq 1} \text{ V.a. t.q.} & \mathbb{P}(X_n=n^2)=\frac{1}{n}\\ \mathbb{P}(X_n=0)=1-\frac{1}{n}\\ \forall \mathcal{E}>0, & \mathbb{P}(|X_n|>\mathcal{E})=\mathbb{P}(X_n=n^2) \text{ dès que } n^2>\mathcal{E} \end{array}$

$$=\frac{1}{n} \xrightarrow{n \to \infty} 0$$

$$\text{Donc } (X_n) \xrightarrow{\mathbb{P}} 0$$

$$\text{Mais }, \quad \mathbb{E}(X_n) = 0 \cdot (1 - \frac{1}{n}) + n^2 \cdot \frac{1}{n} = n$$

$$\text{tim } \mathbb{E}(X_n) = +\infty \Rightarrow \mathbb{E}(0) = 0$$

FIN SÉANCE 12 -